Complete wetting of Pt(111) by nanoscale liquid water films
Journal Article
·
· Journal of Physical Chemistry Letters
The melting and wetting of nanoscale crystalline ice films on Pt(111) that are transiently heated above the melting point using nanosecond laser pulses are studied with infrared refection absorption spectroscopy (IRAS) and Kr temperature programmed desorption (TPD). The as-grown crystalline ice films consist of isolated nanoscale ice crystallites embedded in a hydrophobic water monolayer. Upon heating above the melting point, these ice crystallites rapidly melt to form nanoscale droplets of liquid water. Rapid cooling of the system to cryogenic temperatures after each laser pulse quenches the water films and allows them to be interrogated with IRAS, Kr TPD and other ultrahigh vacuum surface science techniques. With each successive heat pulse, these liquid drops spread across the surface until it is entirely covered with multilayer water films after several pulses. These results, which show that nanoscale water films completely wet Pt(111), are in contrast to molecular dynamics simulations predicting partial wetting of nanoscale water drops on a hydrophobic water monolayer. The results provide valuable new insights into the wetting characteristics of nanoscale water films on a clean, well-characterized single crystal surface.
- Research Organization:
- Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC05-76RL01830
- OSTI ID:
- 1243221
- Report Number(s):
- PNNL-SA-114918; KC0301050
- Journal Information:
- Journal of Physical Chemistry Letters, Journal Name: Journal of Physical Chemistry Letters Journal Issue: 3 Vol. 7; ISSN 1948-7185
- Publisher:
- American Chemical Society
- Country of Publication:
- United States
- Language:
- English
Similar Records
Crystalline Ice Growth on Pt(111) and Pd(111): Nonwetting Growth on a Hydrophobic Water Monolayer
Crystalline Ice Growth on Pt(111): Observation of a Hydrophobic Water Monolayer
Layer-by-Layer Growth of Thin Amorphous Solid Water Films on Pt(111) and Pd(111)
Journal Article
·
Wed Mar 21 00:00:00 EDT 2007
· Journal of Chemical Physics, 126(11):Art. No. 114702
·
OSTI ID:908944
Crystalline Ice Growth on Pt(111): Observation of a Hydrophobic Water Monolayer
Journal Article
·
Fri Oct 14 00:00:00 EDT 2005
· Physical Review Letters, 95(16):166102
·
OSTI ID:860413
Layer-by-Layer Growth of Thin Amorphous Solid Water Films on Pt(111) and Pd(111)
Journal Article
·
Fri Jul 28 00:00:00 EDT 2006
· Journal of Chemical Physics, 125(4):044713-1 - 044713-12
·
OSTI ID:891132