skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spatially resolved resistance of NiO nanostructures under humid environment

Conference ·
OSTI ID:1241478

The spatially resolved electrical response of polycrystalline NiO films composed of 40 nm crystallites was investigated under different relative humidity levels (RH). The topological and electrical properties (surface potential and resistance) were characterized with sub 25nm resolution using Kelvin probe force microscopy (KPFM) and conductive scanning probe microscopy under argon atmosphere at 0%, 50%, and 80% relative humidity. The dimensionality of surface features obtained through autocorrelation analysis of topological maps increased linearly with increased relative humidity, as water was adsorbed onto the film surface. Surface potential decreased from about 280mV to about 100 mV and resistance decreased from about 5 G to about 3 G , in a nonlinear fashion when relative humidity was increased from 0% to 80%. Spatially resolved surface potential and resistance of the NiO films was found to be heterogeneous throughout the film, with distinct domains that grew in size from about 60 nm to 175 nm at 0% and 80% RH levels, respectively. The heterogeneous character of the topological, surface potential, and resistance properties of the polycrystalline NiO film observed under dry conditions decreased with increased relative humidity, yielding nearly homogeneous surface properties at 80% RH, suggesting that the nanoscale potential and resistance properties converge with the mesoscale properties as water is adsorbed onto the NiO film.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-00OR22725
OSTI ID:
1241478
Resource Relation:
Conference: SPIE Photonics West, San Fransisco, CA, USA, 20160213, 20160218
Country of Publication:
United States
Language:
English

Similar Records

Imaging of electrical response of NiOx under controlled environment with sub-25-nm resolution
Journal Article · Tue Jul 19 00:00:00 EDT 2016 · Journal of Photonics for Energy · OSTI ID:1241478

Growth and Dissolution of Iron and Manganese Oxide Films
Technical Report · Mon Dec 22 00:00:00 EST 2008 · OSTI ID:1241478

Towards functional assembly of 3D and 2D nanomaterials
Conference · Thu Sep 01 00:00:00 EDT 2016 · OSTI ID:1241478