Addition of Corona Block Homopolymer Retards Chain Exchange in Solutions of Block Copolymer Micelles
Journal Article
·
· Macromolecules
- Univ. of Minnesota, Minneapolis, MN (United States)
The exchange of copolymer chains between 1 vol % PS–PEP (poly(styrene-b-ethylene-alt-propylene)) diblock copolymer micelles in squalane (selective for PEP) is investigated in this work using time-resolved small-angle neutron scattering (TR-SANS) as a function of added PEP homopolymer. The solvent squalane, C30H62, is substituted in part or completely with PEP homopolymers that are the same molecular weight as the corona blocks. Polymer solutions/mixtures (1 vol % PS–PEP, plus 2, 7, or 15 vol % PEP in squalane, and 1 vol % PS–PEP in PEP) were separately prepared using normal (h-PS) or deuterated equivalent (d-PS) PS–PEP diblock copolymers. The solvent was contrast matched to a 50/50 mixed h-/d-PS micelle core, so that the scattering intensity decays with the mixing of h- and d-PS–PEP chains undergoing exchange between micelles. The chain exchange rate can therefore be assessed quantitatively. As the concentration of added homopolymer in solution increases above the overlap concentration of PEP chains, the chain exchange rate drops significantly. The results are compared to an earlier study of chain exchange between PS–PEP micelles in a 15% solution in squalane, which was also found to be significantly slower than when the solution is dilute. The primary factor in this slowing down of chain exchange is an increased screening of excluded volume interactions among the corona blocks. The role of increasing micelle aggregation number with PEP concentration is found not to be the dominant effect up to 15% added PEP but may play an increasingly important role in the PEP melt matrix, where no chain exchange could be detected in these experiments.
- Research Organization:
- Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
- Grant/Contract Number:
- AC02-06CH11357
- OSTI ID:
- 1241057
- Journal Information:
- Macromolecules, Journal Name: Macromolecules Journal Issue: 4 Vol. 49; ISSN 0024-9297
- Publisher:
- American Chemical SocietyCopyright Statement
- Country of Publication:
- United States
- Language:
- ENGLISH
Full Gamut Wall Tunability from Persistent Micelle Templates via Ex Situ Hydrolysis
|
journal | March 2019 |
Investigation of failure behavior of a thermoplastic elastomer gel
|
journal | January 2018 |
Widely tunable persistent micelle templates via homopolymer swelling
|
journal | January 2019 |
Similar Records
Effect of Corona Block Length on the Structure and Chain Exchange Kinetics of Block Copolymer Micelles
Nanoscale Mixing of Soft Solids
Depletion Interactions: Effects of Added Homopolymer on Ordered Phases Formed by Spherical Block Copolymer Micelles
Journal Article
·
Mon Apr 30 20:00:00 EDT 2018
· Macromolecules
·
OSTI ID:1455243
Nanoscale Mixing of Soft Solids
Journal Article
·
Wed Mar 06 23:00:00 EST 2013
· J. Am. Chem. Soc.
·
OSTI ID:1049564
Depletion Interactions: Effects of Added Homopolymer on Ordered Phases Formed by Spherical Block Copolymer Micelles
Journal Article
·
Mon Dec 08 23:00:00 EST 2008
· Macromolecules
·
OSTI ID:1006987