Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High Concentration Electrolytes
Journal Article
·
· Advanced Functional Materials
The electrolyte stability against reactive reduced-oxygen species is crucial for the development of rechargeable Li-O2 batteries. In this work, we systematically investigated the effect of lithium salt concentration in 1,2-dimethoxyethane (DME)-based electrolytes on the cycling stability of Li-O2 batteries. Cells with high concentration electrolyte illustrate largely enhanced cycling stability under both the full discharge/charge (2.0-4.5 V vs. Li/Li+) and the capacity limited (at 1,000 mAh g-1) conditions. These cells also exhibit much less reaction-residual on the charged air electrode surface, and much less corrosion to the Li metal anode. The density functional theory calculations are conducted on the molecular orbital energies of the electrolyte components and the Gibbs activation barriers for superoxide radical anion to attack DME solvent and Li+-(DME)n solvates. In a highly concentrated electrolyte, all DME molecules have been coordinated with salt and the C-H bond scission of a DME molecule becomes more difficult. Therefore, the decomposition of highly concentrated electrolyte in a Li-O2 battery can be mitigated and both air-cathodes and Li-metal anodes exhibits much better reversibility. As a results, the cyclability of Li-O2 can be largely improved.
- Research Organization:
- Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC05-76RL01830
- OSTI ID:
- 1239475
- Report Number(s):
- PNNL-SA-112653; 48877; 48379; VT1201000
- Journal Information:
- Advanced Functional Materials, Journal Name: Advanced Functional Materials Journal Issue: 4 Vol. 26; ISSN 1616-301X
- Publisher:
- Wiley
- Country of Publication:
- United States
- Language:
- English
Similar Records
Stabilization of Li Metal Anode in DMSO-Based Electrolytes via Optimization of Salt-Solvent Coordination for Li-O 2 Batteries
Stabilization of Li Metal Anode in DMSO‐Based Electrolytes via Optimization of Salt–Solvent Coordination for Li–O 2 Batteries
Highly Stable and Conductive 1,3‐Dioxolane/Hydrocarbon Based Electrolyte Solvent for Advanced Lithium‐Sulfur Batteries
Journal Article
·
Tue Mar 07 23:00:00 EST 2017
· Advanced Energy Materials
·
OSTI ID:1372980
Stabilization of Li Metal Anode in DMSO‐Based Electrolytes via Optimization of Salt–Solvent Coordination for Li–O 2 Batteries
Journal Article
·
Tue Mar 07 19:00:00 EST 2017
· Advanced Energy Materials
·
OSTI ID:1400619
Highly Stable and Conductive 1,3‐Dioxolane/Hydrocarbon Based Electrolyte Solvent for Advanced Lithium‐Sulfur Batteries
Journal Article
·
Sun Apr 13 20:00:00 EDT 2025
· ChemElectroChem
·
OSTI ID:2568345