skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluating the oxidative, photothermal and electrical stability of colloidal nanocrystal solids

Technical Report ·
OSTI ID:1238213
 [1]
  1. Univ. of California, Irvine, CA (United States)

IV-VI quantum dot (QD) solids are a novel class of granular electronic materials with great technological potential (e.g., in photodetectors, field-effect transistors (FETs), and solar cells), but their oxidative and thermal instability present a barrier to practical applications [1]. Poor stability is a fundamental issue facing many nanoscale materials due to high surface area and surface energy. Basic studies are needed to elucidate the most important mechanisms of degradation and develop robust countermeasures if QD materials are to become technologically important. This project determined the degradation mechanisms of IV-VI QD solids (primarily PbSe and PbS) and introduced new chemical strategies to drastically improve their performance, stability, and operating lifetimes [2-5]. Our approach was based on (1) detailed testing of QD thin film materials (principally FETs and solar cells) as a function of oxidative and thermal stress, and (2) the use of organic and inorganic approaches to link the QDs into strongly electronically coupled, high-mobility films, prevent their oxidation, and eliminate internal degrees of freedom that lead to film instability and degradation in response to electrical and thermal stress. Stability against oxidation and thermal degradation was the major focus of this project. We have evaluated the stability of QD thin films and interfaces at temperatures less than 100°C (the regime most relevant to solar and transistor applications). Low-temperature oxidation and sintering of QD films have been investigated using optical absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), current-voltage scanning of transistors and solar cells, X-ray photoelectron spectroscopy, and scanning Kelvin probe microscopy (SKPM). SKPM was used to map the potential profiles of operating QD FETs and solar cells as a function of bias and illumination, which provides detailed information on how the work functions, potential drops and electric field within these devices determine device operation, and set the stage for future studies targeted at understanding and preventing device failure. We pursued two strategies to fabricate QD films with stable electrical characteristics: (1) the use of robust molecular surface ligands [2], and (2) “matrix engineering,” i.e., infilling the QD solid with metal oxide or metal sulfide matrices by low-temperature atomic layer deposition (ALD) to passivate surface states, prevent oxidation, lock the QDs into position, inhibit diffusion, and tune the height and width of the inter-QD potential barriers that govern charge transport [5,6]. Poor stability is a common feature of nanoscale electronic materials, yet stability is all too rarely the focus of basic research. Fundamental studies are therefore needed to elucidate the most important mechanisms of degradation and develop simple yet effective countermeasures. By revealing both how QD solids degrade in response to environmental stresses (oxidative, photothermal, and electric) and how to prevent this degradation, the project has greatly improved our ability to develop stable, high-performance QD materials for real-world applications.

Research Organization:
Univ. of California, Irvine, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
SC0003904
OSTI ID:
1238213
Report Number(s):
DOE-UCI-03904
Country of Publication:
United States
Language:
English