Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Biophysical controls on carbon and water vapor fluxes across a grassland climatic gradient in the United States

Journal Article · · Agricultural and Forest Meteorology (Print)
Understanding of the underlying causes of spatial variation in exchange of carbon and water vapor fluxes between grasslands and the atmosphere is crucial for accurate estimates of regional and global carbon and water budgets, and for predicting the impact of climate change on biosphere–atmosphere feedbacks of grasslands. We used ground-based eddy flux and meteorological data, and the Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) from 12 grasslands across the United States to examine the spatial variability in carbon and water vapor fluxes and to evaluate the biophysical controls on the spatial patterns of fluxes. Precipitation was strongly associated with spatial and temporal variability in carbon and water vapor fluxes and vegetation productivity. Grasslands with annual average precipitation <600 mm generally had neutral annual carbon balance or emitted small amount of carbon to the atmosphere. Despite strong coupling between gross primary production (GPP)and evapotranspiration (ET) across study sites, GPP showed larger spatial variation than ET, and EVI had a greater effect on GPP than on ET. Consequently, large spatial variation in ecosystem water use efficiency (EWUE = annual GPP/ET; varying from 0.67 ± 0.55 to 2.52 ± 0.52 g C mm⁻¹ET) was observed. Greater reduction in GPP than ET at high air temperature and vapor pressure deficit caused a reduction in EWUE in dry years, indicating a response which is opposite than what has been reported for forests. Our results show that spatial and temporal variations in ecosystem carbon uptake, ET, and water use efficiency of grasslands were strongly associated with canopy greenness and coverage, as indicated by EVI.
Research Organization:
Argonne National Laboratory (ANL)
Sponsoring Organization:
U.S. Department of Agriculture - National Institute of Food and Agriculture; USDOE Office of Science - Office of Biological and Environmental Research - Terrestrial Ecosystem Science
DOE Contract Number:
AC02-06CH11357
OSTI ID:
1236499
Journal Information:
Agricultural and Forest Meteorology (Print), Journal Name: Agricultural and Forest Meteorology (Print) Vol. 214-215; ISSN 0168-1923
Country of Publication:
United States
Language:
English

Similar Records

Underestimates of Grassland Gross Primary Production in MODIS Standard Products
Journal Article · Wed Nov 07 23:00:00 EST 2018 · Remote Sensing · OSTI ID:1567140

Representing Grasslands Using Dynamic Prognostic Phenology Based on Biological Growth Stages: Part 2. Carbon Cycling
Journal Article · Sat Nov 30 23:00:00 EST 2019 · Journal of Advances in Modeling Earth Systems · OSTI ID:1800139

Ecosystem leaf area, gross primary production, and evapotranspiration responses to wildfire in the Columbia River basin
Journal Article · Fri May 09 00:00:00 EDT 2025 · Biogeosciences (Online) · OSTI ID:2565725