skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantum plasmonic sensing

Abstract

Surface plasmon resonance (SPR) sensors can reach the quantum noise limit of the optical readout field in various configurations. We demonstrate that two-mode intensity squeezed states produce a further enhancement in sensitivity compared with a classical optical readout when the quantum noise is used to transduce an SPR sensor signal in the Kretschmann configuration. The quantum noise reduction between the twin beams when incident at an angle away from the plasmonic resonance, combined with quantum noise resulting from quantum anticorrelations when on resonance, results in an effective SPR-mediated modulation that yields a measured sensitivity 5 dB better than that with a classical optical readout in this configuration. Furthermore, the theoretical potential of this technique points to resolving particle concentrations with more accuracy than is possible via classical approaches to optical transduction.

Authors:
 [1];  [2];  [2]
  1. Univ. of Virginia, Charlottesville, VA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1235835
Alternate Identifier(s):
OSTI ID: 1225129
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review. A
Additional Journal Information:
Journal Volume: 92; Journal Issue: 5; Journal ID: ISSN 1050-2947
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Fan, Wenjiang, Lawrie, Benjamin J., and Pooser, Raphael C. Quantum plasmonic sensing. United States: N. p., 2015. Web. doi:10.1103/PhysRevA.92.053812.
Fan, Wenjiang, Lawrie, Benjamin J., & Pooser, Raphael C. Quantum plasmonic sensing. United States. doi:10.1103/PhysRevA.92.053812.
Fan, Wenjiang, Lawrie, Benjamin J., and Pooser, Raphael C. Wed . "Quantum plasmonic sensing". United States. doi:10.1103/PhysRevA.92.053812. https://www.osti.gov/servlets/purl/1235835.
@article{osti_1235835,
title = {Quantum plasmonic sensing},
author = {Fan, Wenjiang and Lawrie, Benjamin J. and Pooser, Raphael C.},
abstractNote = {Surface plasmon resonance (SPR) sensors can reach the quantum noise limit of the optical readout field in various configurations. We demonstrate that two-mode intensity squeezed states produce a further enhancement in sensitivity compared with a classical optical readout when the quantum noise is used to transduce an SPR sensor signal in the Kretschmann configuration. The quantum noise reduction between the twin beams when incident at an angle away from the plasmonic resonance, combined with quantum noise resulting from quantum anticorrelations when on resonance, results in an effective SPR-mediated modulation that yields a measured sensitivity 5 dB better than that with a classical optical readout in this configuration. Furthermore, the theoretical potential of this technique points to resolving particle concentrations with more accuracy than is possible via classical approaches to optical transduction.},
doi = {10.1103/PhysRevA.92.053812},
journal = {Physical Review. A},
issn = {1050-2947},
number = 5,
volume = 92,
place = {United States},
year = {2015},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Quantum-mechanical noise in an interferometer
journal, April 1981


Squeezed-Light Optical Magnetometry
journal, July 2010


Nonlinear optical magnetometry with accessible in situ optical squeezing
journal, January 2014

  • Otterstrom, N.; Pooser, R. C.; Lawrie, B. J.
  • Optics Letters, Vol. 39, Issue 22
  • DOI: 10.1364/OL.39.006533

Reduced spin measurement back-action for a phase sensitivity ten times beyond the standard quantum limit
journal, July 2014


Biological measurement beyond the quantum limit
journal, February 2013


Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light
journal, July 2013


Ultrasensitive measurement of microcantilever displacement below the shot-noise limit
journal, January 2015


Plasmonics for near-field nano-imaging and superlensing
journal, July 2009


Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions
journal, January 2006


Quantum plasmonics with a metal nanoparticle array
journal, June 2012


Long-range surface-plasmon-polariton excitation at the quantum level
journal, May 2009


Surface plasmon resonance sensors: review
journal, January 1999

  • Homola, Jiřı́; Yee, Sinclair S.; Gauglitz, Günter
  • Sensors and Actuators B: Chemical, Vol. 54, Issue 1-2, p. 3-15
  • DOI: 10.1016/S0925-4005(98)00321-9

Optical chemical sensor based on surface plasmon measurement
journal, January 1988

  • Matsubara, Koji; Kawata, Satoshi; Minami, Shigeo
  • Applied Optics, Vol. 27, Issue 6
  • DOI: 10.1364/AO.27.001160

Plasmonic nanorod metamaterials for biosensing
journal, October 2009

  • Kabashin, A. V.; Evans, P.; Pastkovsky, S.
  • Nature Materials, Vol. 8, Issue 11
  • DOI: 10.1038/nmat2546

Biosensing with plasmonic nanosensors
journal, June 2008

  • Anker, Jeffrey N.; Hall, W. Paige; Lyandres, Olga
  • Nature Materials, Vol. 7, Issue 6
  • DOI: 10.1038/nmat2162

Surface plasmon resonance (SPR) sensors: approaching their limits?
journal, January 2009


Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach–Zehnder configuration
journal, January 2004


Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing
journal, January 2009

  • Kabashin, Andrei V.; Patskovsky, Sergiy; Grigorenko, Alexander N.
  • Optics Express, Vol. 17, Issue 23
  • DOI: 10.1364/OE.17.021191

Extraordinary Optical Transmission of Multimode Quantum Correlations via Localized Surface Plasmons
journal, April 2013


Demonstration of Quadrature-Squeezed Surface Plasmons in a Gold Waveguide
journal, June 2009


Two-plasmon quantum interference
journal, March 2014

  • Fakonas, James S.; Lee, Hyunseok; Kelaita, Yousif A.
  • Nature Photonics, Vol. 8, Issue 4
  • DOI: 10.1038/nphoton.2014.40

Quantum interference in plasmonic circuits
journal, August 2013

  • Heeres, Reinier W.; Kouwenhoven, Leo P.; Zwiller, Valery
  • Nature Nanotechnology, Vol. 8, Issue 10
  • DOI: 10.1038/nnano.2013.150

Quantum Spectroscopy of Plasmonic Nanostructures
journal, March 2014

  • Kalashnikov, Dmitry A.; Pan, Zhenying; Kuznetsov, Arseniy I.
  • Physical Review X, Vol. 4, Issue 1
  • DOI: 10.1103/PhysRevX.4.011049

Tunable delay of Einstein–Podolsky–Rosen entanglement
journal, February 2009

  • Marino, A. M.; Pooser, R. C.; Boyer, V.
  • Nature, Vol. 457, Issue 7231
  • DOI: 10.1038/nature07751

Quantum-network generation based on four-wave mixing
journal, January 2015


Quantum squeezing and entanglement from a two-mode phase-sensitive amplifier via four-wave mixing in rubidium vapor
journal, February 2015


Strong low-frequency quantum correlations from a four-wave-mixing amplifier
journal, October 2008


Quantum correlations by four-wave mixing in an atomic vapor in a nonamplifying regime: Quantum beam splitter for photons
journal, November 2011


    Works referencing / citing this record:

    Tunable plasmons in regular planar arrays of graphene nanoribbons with armchair and zigzag-shaped edges
    journal, January 2017

    • Vacacela Gomez, Cristian; Pisarra, Michele; Gravina, Mario
    • Beilstein Journal of Nanotechnology, Vol. 8
    • DOI: 10.3762/bjnano.8.18

    Tunable plasmons in regular planar arrays of graphene nanoribbons with armchair and zigzag-shaped edges
    journal, January 2017

    • Vacacela Gomez, Cristian; Pisarra, Michele; Gravina, Mario
    • Beilstein Journal of Nanotechnology, Vol. 8
    • DOI: 10.3762/bjnano.8.18