skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rate Theory Modeling and Simulations of Silicide Fuel at LWR Conditions

Technical Report ·
DOI:https://doi.org/10.2172/1232625· OSTI ID:1232625

Uranium silicide (U3Si2) fuel has higher thermal conductivity and higher uranium density, making it a promising candidate for the accident-tolerant fuel (ATF) used in light water reactors (LWRs). However, previous studies on the fuel performance of U3Si2, including both experimental and computational approaches, have been focusing on the irradiation conditions in research reactors, which usually involve low operation temperatures and high fuel burnups. Thus, it is important to examine the fuel performance of U3Si2 at typical LWR conditions so as to evaluate the feasibility of replacing conventional uranium dioxide fuel with this silicide fuel material. As in-reactor irradiation experiments involve significant time and financial cost, it is appropriate to utilize modeling tools to estimate the behavior of U3Si2 in LWRs based on all those available research reactor experimental references and state-of-the-art density functional theory (DFT) calculation capabilities at the early development stage. Hence, in this report, a comprehensive investigation of the fission gas swelling behavior of U3Si2 at LWR conditions is introduced. The modeling efforts mentioned in this report was based on the rate theory (RT) model of fission gas bubble evolution that has been successfully applied for a variety of fuel materials at devious reactor conditions. Both existing experimental data and DFT-calculated results were used for the optimization of the parameters adopted by the RT model. Meanwhile, the fuel-cladding interaction was captured by the coupling of the RT model with simplified mechanical correlations. Therefore, the swelling behavior of U3Si2 fuel and its consequent interaction with cladding in LWRs was predicted by the rate theory modeling, providing valuable information for the development of U3Si2 fuel as an accident-tolerant alternative for uranium dioxide.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA), Office of Defense Nuclear Nonproliferation
DOE Contract Number:
AC02-06CH11357
OSTI ID:
1232625
Report Number(s):
ANL/NE-15/40; 123625; TRN: US1600182
Country of Publication:
United States
Language:
English