Mechanical properties of niobium radio-frequency cavities
- Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
- Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA
- Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 722 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structure have been conducted up to the tensile strength of the material. Finite-element analysis of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young's modulus value of 88.5 GPa and a Poisson's ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities with large crystals are comparable to those of cavities made of fine-grain niobium.
- Research Organization:
- Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC)
- Grant/Contract Number:
- AC05-06OR23177
- OSTI ID:
- 1222197
- Alternate ID(s):
- OSTI ID: 1422676
OSTI ID: 22479406
- Report Number(s):
- JLAB-ACC--15-2015; DOE/OR/23177-3387; PII: S0921509315301490
- Journal Information:
- Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing, Journal Name: Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing Journal Issue: C Vol. 642; ISSN 0921-5093
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Superconducting radio-frequency cavities made from medium and low-purity niobium ingots
|
journal | April 2016 |
Similar Records
Superconducting radio-frequency cavities made from medium and low-purity niobium ingots
Effect of successive heat treatment on the performance of superconducting radio frequency niobium cavities