Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Classifier-Guided Sampling for Complex Energy System Optimization

Technical Report ·
DOI:https://doi.org/10.2172/1221709· OSTI ID:1221709
 [1];  [1]
  1. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

This report documents the results of a Laboratory Directed Research and Development (LDRD) effort enti tled "Classifier - Guided Sampling for Complex Energy System Optimization" that was conducted during FY 2014 and FY 2015. The goal of this proj ect was to develop, implement, and test major improvements to the classifier - guided sampling (CGS) algorithm. CGS is type of evolutionary algorithm for perform ing search and optimization over a set of discrete design variables in the face of one or more objective functions. E xisting evolutionary algorithms, such as genetic algorithms , may require a large number of o bjecti ve function evaluations to identify optimal or near - optimal solutions . Reducing the number of evaluations can result in significant time savings, especially if the objective function is computationally expensive. CGS reduce s the evaluation count by us ing a Bayesian network classifier to filter out non - promising candidate designs , prior to evaluation, based on their posterior probabilit ies . In this project, b oth the single - objective and multi - objective version s of the CGS are developed and tested on a set of benchm ark problems. As a domain - specific case study, CGS is used to design a microgrid for use in islanded mode during an extended bulk power grid outage.

Research Organization:
Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
1221709
Report Number(s):
SAND2015--8067; 603952
Country of Publication:
United States
Language:
English

Similar Records

Classifier-Guided Sampling Optimizer v. 1.0
Software · Tue Mar 14 00:00:00 EDT 2017 · OSTI ID:1351602

Classifier-guided sampling for discrete variable, discontinuous design space exploration: Convergence and computational performance
Journal Article · Tue Apr 22 00:00:00 EDT 2014 · Engineering Optimization · OSTI ID:1121951

Microgrid Preliminary Design Specification
Technical Report · Sun Jul 01 00:00:00 EDT 2018 · OSTI ID:1734461

Related Subjects