Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Mode I Fracture Toughness Prediction for Multiwalled-Carbon-Nanotube Reinforced Ceramics

Journal Article · · Engineering Fracture Mechanics, 147:83-99

This article develops a multiscale model to predict fracture toughness of multiwalled-carbon-nanotube (MWCNT) reinforced ceramics. The model bridges different scales from the scale of a MWCNT to that of a composite domain containing a macroscopic crack. From the nano, micro to meso scales, Eshelby-Mori-Tanaka models combined with a continuum damage mechanics approach are explored to predict the elastic damage behavior of the composite as a function of MWCNT volume fraction. MWCNTs are assumed to be randomly dispersed in a ceramic matrix subject to cracking under loading. A damage variable is used to describe matrix cracking that causes reduction of the elastic modulus of the matrix. This damage model is introduced in a modified boundary layer modeling approach to capture damage initiation and development at a tip of a pre-existing crack. Damage and fracture are captured only in a process window containing the crack tip under plane strain Mode I loading. The model is validated against the published experimental fracture toughness data for a MWCNT 3 mol% yttria stabilized zirconia composite system. In addition, crack resistance curves as a function of MWCNT content are predicted and fitted by a power law as observed in the experiments on zirconia.

Research Organization:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1214892
Report Number(s):
PNNL-SA-101087; NT0104000
Journal Information:
Engineering Fracture Mechanics, 147:83-99, Journal Name: Engineering Fracture Mechanics, 147:83-99
Country of Publication:
United States
Language:
English

Similar Records

Fracture Toughness Prediction for MWCNT Reinforced Ceramics
Technical Report · Sun Sep 01 00:00:00 EDT 2013 · OSTI ID:1118114

Eshelby-Mori-Tanaka Approach
Software · Tue Oct 13 20:00:00 EDT 2009 · OSTI ID:code-76349

A predictive modeling tool for damage analysis and design of hydrogen storage composite pressure vessels
Journal Article · Fri Apr 23 00:00:00 EDT 2021 · International Journal of Hydrogen Energy · OSTI ID:1785075