Multidimensional dynamic piezoresponse measurements. Unraveling local relaxation behavior in relaxor-ferroelectrics via big data
Journal Article
·
· Journal of Applied Physics
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
- Pennsylvania State Univ., University Park, PA (United States)
- Georgia Inst. of Technology, Atlanta, GA (United States)
Compositional and charge disorder in ferroelectric relaxors lies at the heart of the unusual properties of these systems, such as aging and non-ergodicity, polarization rotations, and a host of temperature and field-driven phase transitions. However, much information about the field-dynamics of the polarization in the prototypical ferroelectric relaxor (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT) remains unprobed at the mesoscopic level. We use a piezoresponse force microscopy-based dynamic multimodal relaxation spectroscopy technique, enabling the study of ferroelectric switching and polarization relaxation at mesoscopic length scales, and carry out measurements on a PMN-0.28PT sample with minimal polishing. Results indicate that beyond a threshold DC bias the average relaxation increases as the system attempts to relax to the previous state. Phenomenological fitting reveals the presence of mesoscale heterogeneity in relaxation amplitudes and clearly suggests the presence of two distinct amplitudes. Independent component analysis reveals the presence of a disorder component of the relaxation, which is found to be strongly anti-correlated with the maximum piezoresponse at that location, suggesting smaller disorder effects where the polarization reversal is large and vice versa. The disorder in the relaxation amplitudes is postulated to arise from rhombohedral and field-induced tetragonal phase in the crystal, with each phase associated with its own relaxation amplitude. As a result, these studies highlight the crucial importance of the mixture of ferroelectric phases in the compositions in proximity of the morphotropic phase boundary in governing the local response and further highlight the ability of PFM voltage and time spectroscopies, in conjunction with big-data multivariate analyses, to locally map disorder and correlate it with parameters governing the dynamic behavior.
- Research Organization:
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC)
- Grant/Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1214472
- Journal Information:
- Journal of Applied Physics, Journal Name: Journal of Applied Physics Journal Issue: 7 Vol. 118; ISSN 0021-8979
- Publisher:
- American Institute of Physics (AIP)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Acoustic Detection of Phase Transitions at the Nanoscale
|
journal | December 2015 |
Machine Detection of Enhanced Electromechanical Energy Conversion in PbZr 0.2 Ti 0.8 O 3 Thin Films
|
journal | May 2018 |
Smart machine learning or discovering meaningful physical and chemical contributions through dimensional stacking
|
journal | August 2019 |
Frontiers in strain-engineered multifunctional ferroic materials
|
journal | August 2016 |
Similar Records
Direct evidence of mesoscopic dynamic heterogeneities at the surfaces of ergodic ferroelectric relaxors
Mapping Disorder in Polycrystalline Relaxors: A Piezoresponse Force Microscopy Approach
Real space mapping of polarization dynamics and hysteresis loop formation in relaxor-ferroelectric PbMg1/3Nb2/3O3 PbTiO3 solid solutions
Journal Article
·
Thu Dec 31 23:00:00 EST 2009
· Physical Review B
·
OSTI ID:988760
Mapping Disorder in Polycrystalline Relaxors: A Piezoresponse Force Microscopy Approach
Journal Article
·
Wed Oct 27 20:00:00 EDT 2010
· Materials
·
OSTI ID:1628425
Real space mapping of polarization dynamics and hysteresis loop formation in relaxor-ferroelectric PbMg1/3Nb2/3O3 PbTiO3 solid solutions
Journal Article
·
Thu Dec 31 23:00:00 EST 2009
· Journal of Applied Physics
·
OSTI ID:1082021