skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development, testing, and demonstration of an optimal fine coal cleaning circuit

Abstract

The overall objective of this project is to improve the efficiency of fine coal cleaning. The project will be completed in two phases: bench-scale testing and demonstration of four advanced flotation cells and; in-plant proof-of-concept (POC) pilot plant testing of two flotation cells individually and in two-stage combinations. The goal is to ascertain if a two-stage circuit can result in reduced capital and operating costs while achieving improved separation efficiency. The plant selected for this project, Cyprus Emerald Coal Preparation plant, cleans 1200 tph of raw coal. The plant produces approximately 4 million tonnes of clean coal per year at an average as received energy content of 30.2 MJ/Kg (13,000 Btu/lb).

Authors:
; ;  [1]
  1. and others
Publication Date:
Research Org.:
USDOE Pittsburgh Energy Technology Center, PA (United States)
OSTI Identifier:
121387
Report Number(s):
CONF-9507159-
ON: DE95017240; TRN: 95:024002
Resource Type:
Conference
Resource Relation:
Conference: 11. annual coal preparation, utilization, and environmental control contractors conference, Pittsburgh, PA (United States), 12-14 Jul 1995; Other Information: PBD: [1995]; Related Information: Is Part Of Eleventh annual coal preparation, utilization, and environmental control contractors conference: Proceedings; PB: 440 p.
Country of Publication:
United States
Language:
English
Subject:
01 COAL, LIGNITE, AND PEAT; COAL FINES; CLEANING; COAL PREPARATION PLANTS; OPERATION; BENCH-SCALE EXPERIMENTS; FLOTATION; EFFICIENCY

Citation Formats

Mishra, M., Placha, M., and Bethell, P. Development, testing, and demonstration of an optimal fine coal cleaning circuit. United States: N. p., 1995. Web.
Mishra, M., Placha, M., & Bethell, P. Development, testing, and demonstration of an optimal fine coal cleaning circuit. United States.
Mishra, M., Placha, M., and Bethell, P. Wed . "Development, testing, and demonstration of an optimal fine coal cleaning circuit". United States. doi:. https://www.osti.gov/servlets/purl/121387.
@article{osti_121387,
title = {Development, testing, and demonstration of an optimal fine coal cleaning circuit},
author = {Mishra, M. and Placha, M. and Bethell, P.},
abstractNote = {The overall objective of this project is to improve the efficiency of fine coal cleaning. The project will be completed in two phases: bench-scale testing and demonstration of four advanced flotation cells and; in-plant proof-of-concept (POC) pilot plant testing of two flotation cells individually and in two-stage combinations. The goal is to ascertain if a two-stage circuit can result in reduced capital and operating costs while achieving improved separation efficiency. The plant selected for this project, Cyprus Emerald Coal Preparation plant, cleans 1200 tph of raw coal. The plant produces approximately 4 million tonnes of clean coal per year at an average as received energy content of 30.2 MJ/Kg (13,000 Btu/lb).},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Nov 01 00:00:00 EST 1995},
month = {Wed Nov 01 00:00:00 EST 1995}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The overall objective of this research effort is to improve the efficiency of fine coal flotation in preparation plants above that of currently used conventional cells. In addition to evaluating single-stage operation of four selected advanced flotation devices, the project will also evaluate them in two-stage configurations. The project is being implemented in two phases. Phase 1 comprises bench-scale testing of the flotation units, and Phase 2 comprises in-plant, proof-of-concept (POC), pilot-scale testing of selected configurations at the Cyprus Emerald preparation plant. The Task 5 report presents the findings of the Phase 1 bench-scale test results and provides the basismore » for equipment selection for Phase 2. Four advanced flotation technologies selected for bench-scale testing are: Jameson cell; Outokumpu HG tank cell; packed column; and open column. In addition to testing all four of the cells in single-stage operation, the Jameson and Outokumpu cells were tested as candidate first-stage cells because of their propensity for rapid attachment of coal particles with air bubbles and low capital and operating costs. The column cells were selected as candidate second-stage cells because of their high-efficiency separation of low-ash products from high-ash feed coals. 32 figs., 72 tabs.« less
  • The objective of this project was to improve the efficiency of the fine coal froth flotation circuit in commercial coal preparation plants. The plant selected for this project, Cyprus Emerald Coal Preparation Plant, cleans 1200-1400 tph of Pittsburgh seam raw coal and uses conventional flotation cells to clean the minus 100-mesh size fraction. The amount of coal in this size fraction is approximately 80 tph with an average ash content of 35%. The project was carried out in two phases. In Phase I, four advanced flotation cells, i.e., a Jameson cell, an Outokumpu HG tank cell, an open column, andmore » a packed column cell, were subjected to bench-scale testing and demonstration. In Phase II, two of these flotation cells, the Jameson cell and the packed column, were subjected to in-plant, proof-of-concept (POC) pilot plant testing both individually and in two-stage combination in order to ascertain whether a two-stage circuit results in lower levelized production costs. The bench-scale results indicated that the Jameson cell and packed column cell would be amenable to the single- and two-stage flotation approach. POC tests using these cells determined that single-stage coal matter recovery (CMR) of 85% was possible with a product ash content of 5.5-7%. Two-stage operation resulted in a coal recovery of 90% with a clean coal ash content of 6-7.5%. This compares favorably with the plant flotation circuit recovery of 80% at a clean coal ash of 11%.« less
  • A recent study found the Floatex Density Separator to be very efficient at cleaning the coarse fraction (16x100 mesh) in a typical fine coal circuit feed while achieving a throughput capacity of 2-3 tph/ft{sup 2}. Additionally, total sulfur rejection was improved by 10% as compared to typical spiral performance on this same size fraction. Based on these findings, in-plant tests using an 18x18-inch Floatex Density Separator were conducted at the Galatia preparation plant in Southern Illinois. A statistically designed test program was carried out to optimize the Floatex operating conditions and to evaluate the unit capacity and efficiency. Simultaneous samplesmore » were collected from the Floatex and the existing coal spirals to obtain a comparison of the separation performance for each unit process.« less
  • Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense-medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. This papermore » describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.« less
  • Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. Thismore » paper describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.« less