Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Enhancing Biological Analyses with Three Dimensional Field Asymmetric Ion Mobility, Low Field Drift Time Ion Mobility and Mass Spectrometry (µFAIMS/IMS-MS) Separations

Journal Article · · Analyst
DOI:https://doi.org/10.1039/c5an00897b· OSTI ID:1212243
We report the first evaluation of a platform coupling a high speed field asymmetric ion mobility spectrometry microchip (µFAIMS) with drift tube ion mobility and mass spectrometry (IMS-MS). The µFAIMS/IMS-MS platform was used to analyze biological samples and simultaneously acquire multidimensional information of detected features from the measured FAIMS compensation fields and IMS drift times, while also obtaining accurate ion masses. These separations thereby increase the overall separation power, resulting increased information content, and provide more complete characterization of more complex samples. The separation conditions were optimized for sensitivity and resolving power by the selection of gas compositions and pressures in the FAIMS and IMS separation stages. The resulting performance provided three dimensional separations, benefitting both broad complex mixture studies and targeted analyses by e.g. improving isomeric separations and allowing detection of species obscured by “chemical noise” and other interfering peaks.
Research Organization:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1212243
Report Number(s):
PNNL-SA-110080; 48203; 400412000
Journal Information:
Analyst, Journal Name: Analyst Vol. 2015; ISSN 0003-2654
Country of Publication:
United States
Language:
English