Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Repository thermal response: A preliminary evaluation of the effects of modeled waste stream resolution

Technical Report ·
DOI:https://doi.org/10.2172/120870· OSTI ID:120870

One of the primary factors that influences our predictions of host-rock thermal response within a high level waste repository is how the waste stream`s represented in the models. In the context of thermal modeling, waste stream refers to an itemized listing of the type (pressurized-water or boiling-water reactor), age, burnup, and enrichment of the spent nuclear fuel assemblies entering the repository over the 25-year emplacement phase. The effect of package-by-package variations in spent fuel characteristics on predicted repository thermal response is the focus of this report. A three-year portion of the emplacement period was modeled using three approaches to waste stream resolution. The first assumes that each package type emplaced in a given year is adequately represented by average characteristics. For comparison, two models that explicitly account for each waste package`s individual characteristics were run; the first assuming a random selection of packages and the second an ordered approach aimed at locating the higher power output packages toward the center of the emplacement area. Results indicate that the explicit representation of packages results in hot and cold spots that could have performance assessment and design implications. Furthermore, questions are raised regarding the representativeness of average characteristics with respect to integrated energy output and the possible implications of a mass-based repository loading approach.

Research Organization:
Sandia National Labs., Albuquerque, NM (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
120870
Report Number(s):
SAND--95-0917; ON: DE96001862
Country of Publication:
United States
Language:
English