skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hidden benefits of electric vehicles for addressing climate change

Abstract

There is an increasingly hot debate on whether the replacement of conventional vehicles (CVs) by electric vehicles (EVs) should be delayed or accelerated since EVs require higher cost and cause more pollution than CVs in the manufacturing process. Here we reveal two hidden benefits of EVs for addressing climate change to support the imperative acceleration of replacing CVs with EVs. As EVs emit much less heat than CVs within the same mileage, the replacement can mitigate urban heat island effect (UHIE) to reduce the energy consumption of air conditioners, benefitting local and global climates. To demonstrate these effects brought by the replacement of CVs by EVs, we take Beijing, China, as an example. EVs emit only 19.8% of the total heat emitted by CVs per mile. The replacement of CVs by EVs in 2012 could have mitigated the summer heat island intensity (HII) by about 0.94°C, reduced the amount of electricity consumed daily by air conditioners in buildings by 14.44 million kilowatt-hours (kWh), and reduced daily CO₂ emissions by 10,686 tonnes.

Authors:
 [1];  [2];  [2];  [3];  [4];  [2];  [2]
  1. Hunan Univ., Changsha (China); Michigan State Univ., East Lansing, MI (United States)
  2. Hunan Univ., Changsha (China)
  3. Hunan Univ., Changsha (China); Argonne National Lab. (ANL), Argonne, IL (United States)
  4. Michigan State Univ., East Lansing, MI (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1194167
Grant/Contract Number:
AC02-06CH11357
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 5; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION

Citation Formats

Li, Canbing, Cao, Yijia, Zhang, Mi, Wang, Jianhui, Liu, Jianguo, Shi, Haiqing, and Geng, Yinghui. Hidden benefits of electric vehicles for addressing climate change. United States: N. p., 2015. Web. doi:10.1038/srep09213.
Li, Canbing, Cao, Yijia, Zhang, Mi, Wang, Jianhui, Liu, Jianguo, Shi, Haiqing, & Geng, Yinghui. Hidden benefits of electric vehicles for addressing climate change. United States. doi:10.1038/srep09213.
Li, Canbing, Cao, Yijia, Zhang, Mi, Wang, Jianhui, Liu, Jianguo, Shi, Haiqing, and Geng, Yinghui. Thu . "Hidden benefits of electric vehicles for addressing climate change". United States. doi:10.1038/srep09213. https://www.osti.gov/servlets/purl/1194167.
@article{osti_1194167,
title = {Hidden benefits of electric vehicles for addressing climate change},
author = {Li, Canbing and Cao, Yijia and Zhang, Mi and Wang, Jianhui and Liu, Jianguo and Shi, Haiqing and Geng, Yinghui},
abstractNote = {There is an increasingly hot debate on whether the replacement of conventional vehicles (CVs) by electric vehicles (EVs) should be delayed or accelerated since EVs require higher cost and cause more pollution than CVs in the manufacturing process. Here we reveal two hidden benefits of EVs for addressing climate change to support the imperative acceleration of replacing CVs with EVs. As EVs emit much less heat than CVs within the same mileage, the replacement can mitigate urban heat island effect (UHIE) to reduce the energy consumption of air conditioners, benefitting local and global climates. To demonstrate these effects brought by the replacement of CVs by EVs, we take Beijing, China, as an example. EVs emit only 19.8% of the total heat emitted by CVs per mile. The replacement of CVs by EVs in 2012 could have mitigated the summer heat island intensity (HII) by about 0.94°C, reduced the amount of electricity consumed daily by air conditioners in buildings by 14.44 million kilowatt-hours (kWh), and reduced daily CO₂ emissions by 10,686 tonnes.},
doi = {10.1038/srep09213},
journal = {Scientific Reports},
number = 1,
volume = 5,
place = {United States},
year = {Thu Mar 19 00:00:00 EDT 2015},
month = {Thu Mar 19 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG)more » emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model – Storm Water Management Model – was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020–2040 compared to the volume in 1971–2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. Furthermore, this study highlights the importance of accounting for local adaptation when coping with future urban floods.« less
  • Senator Wirth of Colorado describes the greenhouse effect as the most significant economic, political, environmental and human problem facing the U.S. and that environmental concerns will emerge in the 21st century as one of the top priorities for international attention
  • There is no abstract currently available for this item.
  • Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices.more » The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from $32.7 billion to $54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.« less
  • To investigate the potential local health benefits of adopting greenhouse gas (GHG) mitigation policies, developed scenarios of GHG mitigation for Mexico City, Mexico; Santiago, Chile; Sao Paulo, Brazil; and New York, New York, USA using air pollution health impact factors appropriate to each city. These findings illustrated that GHG mitigation can provide considerable local air pollution-related public health benefits to countries that choose to abate GHG emissions by reducing fossil fuel combustion.