skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Project ATHENA Creates Surrogate Human Organ Systems

Abstract

The development of miniature surrogate human organs, coupled with highly sensitive mass spectrometry technologies, could one day revolutionize the way new drugs and toxic agents are studied. “By developing this ‘homo minutus,’ we are stepping beyond the need for animal or Petri dish testing: There are huge benefits in developing drug and toxicity analysis systems that can mimic the response of actual human organs,” said Rashi Iyer, a senior scientist at Los Alamos National Laboratory. ATHENA, the Advanced Tissue-engineered Human Ectypal Network Analyzer project team, is nearing the full integration of four human organ constructs — liver, heart, lung and kidney — each organ component is about the size of a smartphone screen, and the whole ATHENA “body” of interconnected organs will fit neatly on a desk. A new video available on the Los Alamos National Laboratory YouTube channel updates the ATHENA project as it begins to integrate the various organ systems into a single system. Some 40 percent of pharmaceuticals fail their clinical trials and there are thousands of chemicals whose effects on humans are simply unknown. Providing a realistic, cost-effective and rapid screening system such as ATHENA with high-throughput capabilities could provide major benefits to the medical field,more » screening more accurately and offering a greater chance of clinical trial success. ATHENA is funded by the Defense Threat Reduction Agency (DTRA) and is a collaboration of Los Alamos National Laboratory, Harvard University, Vanderbilt University, Charité Universitätsmedizin, Berlin, Germany, CFD Research Corporation, and the University of California San Francisco.« less

Authors:
; ; ;
Publication Date:
Research Org.:
LANL (Los Alamos National Laboratory (LANL), Los Alamos, NM (United States))
Sponsoring Org.:
USDOE
OSTI Identifier:
1185252
Resource Type:
Multimedia
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; LIVER; LUNG; KIDNEY; ORGAN SYSTEM; BIOLOGY; ENGINEERING; BLOOD SURROGATE; ATHENA; HEART; IN VITRO LIVER; METABOLIZE; ORGAN

Citation Formats

MacQueen, Luke, Knospel, Fanny, Sherrod, Stacy, and Iyer, Rashi. Project ATHENA Creates Surrogate Human Organ Systems. United States: N. p., 2015. Web.
MacQueen, Luke, Knospel, Fanny, Sherrod, Stacy, & Iyer, Rashi. Project ATHENA Creates Surrogate Human Organ Systems. United States.
MacQueen, Luke, Knospel, Fanny, Sherrod, Stacy, and Iyer, Rashi. Mon . "Project ATHENA Creates Surrogate Human Organ Systems". United States. doi:. https://www.osti.gov/servlets/purl/1185252.
@article{osti_1185252,
title = {Project ATHENA Creates Surrogate Human Organ Systems},
author = {MacQueen, Luke and Knospel, Fanny and Sherrod, Stacy and Iyer, Rashi},
abstractNote = {The development of miniature surrogate human organs, coupled with highly sensitive mass spectrometry technologies, could one day revolutionize the way new drugs and toxic agents are studied. “By developing this ‘homo minutus,’ we are stepping beyond the need for animal or Petri dish testing: There are huge benefits in developing drug and toxicity analysis systems that can mimic the response of actual human organs,” said Rashi Iyer, a senior scientist at Los Alamos National Laboratory. ATHENA, the Advanced Tissue-engineered Human Ectypal Network Analyzer project team, is nearing the full integration of four human organ constructs — liver, heart, lung and kidney — each organ component is about the size of a smartphone screen, and the whole ATHENA “body” of interconnected organs will fit neatly on a desk. A new video available on the Los Alamos National Laboratory YouTube channel updates the ATHENA project as it begins to integrate the various organ systems into a single system. Some 40 percent of pharmaceuticals fail their clinical trials and there are thousands of chemicals whose effects on humans are simply unknown. Providing a realistic, cost-effective and rapid screening system such as ATHENA with high-throughput capabilities could provide major benefits to the medical field, screening more accurately and offering a greater chance of clinical trial success. ATHENA is funded by the Defense Threat Reduction Agency (DTRA) and is a collaboration of Los Alamos National Laboratory, Harvard University, Vanderbilt University, Charité Universitätsmedizin, Berlin, Germany, CFD Research Corporation, and the University of California San Francisco.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jun 15 00:00:00 EDT 2015},
month = {Mon Jun 15 00:00:00 EDT 2015}
}
  • Creating surrogate human organs, coupled with insights from highly sensitive mass spectrometry technologies, a new project is on the brink of revolutionizing the way we screen new drugs and toxic agents. ATHENA, the Advanced Tissue-engineered Human Ectypal Network Analyzer project team, is developing four human organ constructs - liver, heart, lung and kidney - that are based on a significantly miniaturized platform. Each organ component will be about the size of a smartphone screen, and the whole ATHENA "body" of interconnected organs would fit neatly on a desk. "By developing this 'homo minutus,' we are stepping beyond the need formore » animal or Petri dish testing: There are huge benefits in developing drug and toxicity analysis systems that can mimic the response of actual human organs," said Rashi Iyer, a senior scientist at Los Alamos National Laboratory, the lead laboratory on the five-year, $19 million multi-institutional effort. The project is supported by the Defense Threat Reduction Agency (DTRA). Some 40 percent of pharmaceuticals fail their clinical trials, Iyer noted, and there are thousands of chemicals whose effects on humans are simply unknown. Providing a realistic, cost-effective and rapid screening system such as ATHENA with high-throughput capabilities could provide major benefits to the medical field, screening more accurately and offering a greater chance of clinical trial success.« less
  • The Genomic Standards Consortium was formed in September 2005. It is an international, open-membership working body which promotes standardization in the description of genomes and the exchange and integration of genomic data. The 2009 meeting was an activity of a five-year funding Research Coordination Network from the National Science Foundation and was organized held at the DOE Joint Genome Institute with organizational support provided by the JGI and by the University of California - San Diego. George Weinstock from Washington University School of Medicine talks about the Human Microbiome Project (HMP) followed briefly by Jennifer Wortman from the University ofmore » Maryland School of Medicine on the Data Analysis and Coordination Center (DACC) portal to the HMP at the Genomic Standards Consortium's 8th meeting at the DOE JGI in Walnut Creek, CA on Sept. 9, 2009.« less
  • In his lecture, Shiller discusses the premise of his 2009 book, coauthored with the Nobel Prize-winning economist George A. Akerlof. The book discusses how “animal spirits,” or human emotions such as confidence, fear, and a concern for fairness, drive financial events, including today’s global financial crisis.
  • Barabasi, Distinguished Professor at Northeastern University and Director of the University's Center for Network Science, discusses the surprising order that characterizes interconnected networks and its implications in communications and medicine.