Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Bayesian Calibration of the Community Land Model using Surrogates

Journal Article · · SIAM/ASA Journal on Uncertainty Quantification, 3(1):199–233
DOI:https://doi.org/10.1137/140957998· OSTI ID:1182912
We present results from the Bayesian calibration of hydrological parameters of the Community Land Model (CLM), which is often used in climate simulations and Earth system models. A statistical inverse problem is formulated for three hydrological parameters, conditioned on observations of latent heat surface fluxes over 48 months. Our calibration method uses polynomial and Gaussian process surrogates of the CLM, and solves the parameter estimation problem using a Markov chain Monte Carlo sampler. Posterior probability densities for the parameters are developed for two sites with different soil and vegetation covers. Our method also allows us to examine the structural error in CLM under two error models. We find that accurate surrogate models can be created for CLM in most cases. The posterior distributions lead to better prediction than the default parameter values in CLM. Climatologically averaging the observations does not modify the parameters’ distributions significantly. The structural error model reveals a correlation time-scale which can potentially be used to identify physical processes that could be contributing to it. While the calibrated CLM has a higher predictive skill, the calibration is under-dispersive.
Research Organization:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1182912
Report Number(s):
PNNL-SA-101091; KP1703020; KJ0401000
Journal Information:
SIAM/ASA Journal on Uncertainty Quantification, 3(1):199–233, Journal Name: SIAM/ASA Journal on Uncertainty Quantification, 3(1):199–233
Country of Publication:
United States
Language:
English

Similar Records

Bayesian calibration of the Community Land Model using surrogates
Technical Report · Fri Jan 31 23:00:00 EST 2014 · OSTI ID:1204075

On the applicability of surrogate-based MCMC-Bayesian inversion to the Community Land Model: Case studies at Flux tower sites
Journal Article · Tue May 31 20:00:00 EDT 2016 · Journal of Geophysical Research: Atmospheres · OSTI ID:1259834

On the applicability of surrogate-based Markov chain Monte Carlo-Bayesian inversion to the Community Land Model: Case studies at flux tower sites: SURROGATE-BASED MCMC FOR CLM
Journal Article · Mon Jul 04 00:00:00 EDT 2016 · Journal of Geophysical Research: Atmospheres · OSTI ID:1322501