skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Soft Landing of Mass-Selected Gold Clusters: Influence of Ion and Ligand on Charge Retention and Reactivity

Journal Article · · International Journal of Mass Spectrometry, 377:205-213

Herein, we employ a combination of reduction synthesis in solution, soft landing of mass-selected precursor and product ions, and in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) to examine the influence of ion and the length of diphosphine ligands on the charge retention and reactivity of ligated gold clusters deposited onto self-assembled monolayer surfaces (SAMs). Product ions (Au10L42+, (10,4)2+, L = 1,3-bis(diphenyl-phosphino)propane, DPPP) were prepared through in-source collision induced dissociation (CID) and precursor ions [(8,4)2+, L = 1,6-bis(diphenylphosphino)hexane, DPPH] were synthesized in solution for comparison to (11,5)3+ precursor ions ligated with DPPP investigated previously (ACS Nano 2012, 6, 573 and J. Phys. Chem. C. 2012, 116, 24977). Similar to (11,5)3+ precursor ions, the (10,4)2+ product ions are shown to retain charge on 1H,1H,2H,2H-perfluorodecanethiol monolayers (FSAMs). Additional abundant peaks at higher m/z indicative of reactivity are observed in the TOF-SIMS spectrum of (10,4)2+ product ions that are not seen for (11,5)3+ precursor ions. The abundance of (10,4)2+ on 16-mercaptohexadecanoic acid (COOH-SAMs) is demonstrated to be lower than on FSAMs, consistent with partial reduction of charge. The (10,4)2+ product ion on 1-dodecanethiol (HSAMs) exhibits peaks similar to those seen on the COOH-SAM. On the HSAM, higher m/z peaks indicative of reactivity are observed similar to those on the FSAM. The (8,4)2+ DPPH precursor ions are shown to retain charge on FSAMs similar to (11,5)3+ precursor ions prepared with DPPP. An additional peak corresponding to attachment of one gold atom to (8,4)2+ is observed at higher m/z for DPPH-ligated clusters. On the COOH-SAM, (8,4)2+ is less abundant than on the FSAM consistent with partial neutralization. The results indicate that although retention of charge by product ions generated by CID is similar to precursor ions their reactivity during analysis with SIMS is different resulting in the formation of peaks corresponding to reaction products. The length of the ligand exerts only a minor influence on the charge retention and reactivity of gold clusters. Based on the observed reactivity of (10,4)2+ it is anticipated that in-source CID will be increasingly applied for the preparation of a distribution of product ions, including undercoordinated and reactive species, for soft landing onto surfaces.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1182889
Report Number(s):
PNNL-SA-101430; 44660; KC0302020
Journal Information:
International Journal of Mass Spectrometry, 377:205-213, Journal Name: International Journal of Mass Spectrometry, 377:205-213
Country of Publication:
United States
Language:
English

Similar Records

Charge Retention by Organometallic Dications on Self-Assembled Monolayer Surfaces
Journal Article · Thu May 15 00:00:00 EDT 2014 · International Journal of Mass Spectrometry, 365-366:187-193 · OSTI ID:1182889

Coverage Dependent Charge Reduction of Cationic Gold Clusters on Surfaces Prepared Using Soft Landing of Mass-selected Ions
Journal Article · Thu Nov 29 00:00:00 EST 2012 · Journal of Physical Chemistry C, 116(47):24977-24986 · OSTI ID:1182889

Effect of the Surface on Charge Reduction and Desorption Kinetics of Soft Landed Peptide Ions
Journal Article · Mon Jun 01 00:00:00 EDT 2009 · Journal of the American Society for Mass Spectrometry, 20(6):901-906 · OSTI ID:1182889