Supervised Gamma Process Poisson Factorization
- Univ. of Texas, Austin, TX (United States)
This thesis develops the supervised gamma process Poisson factorization (S- GPPF) framework, a novel supervised topic model for joint modeling of count matrices and document labels. S-GPPF is fully generative and nonparametric: document labels and count matrices are modeled under a uni ed probabilistic framework and the number of latent topics is controlled automatically via a gamma process prior. The framework provides for multi-class classification of documents using a generative max-margin classifier. Several recent data augmentation techniques are leveraged to provide for exact inference using a Gibbs sampling scheme. The first portion of this thesis reviews supervised topic modeling and several key mathematical devices used in the formulation of S-GPPF. The thesis then introduces the S-GPPF generative model and derives the conditional posterior distributions of the latent variables for posterior inference via Gibbs sampling. The S-GPPF is shown to exhibit state-of-the-art performance for joint topic modeling and document classification on a dataset of conference abstracts, beating out competing supervised topic models. The unique properties of S-GPPF along with its competitive performance make it a novel contribution to supervised topic modeling.
- Research Organization:
- Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA)
- DOE Contract Number:
- AC04-94AL85000
- OSTI ID:
- 1182679
- Report Number(s):
- SAND2015--3996T; 583918
- Country of Publication:
- United States
- Language:
- English
Similar Records
Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences
Supervised Semantic Classification for Nuclear Proliferation Monitoring