skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reversible Inactivation and Desiccation Tolerance of Silicified Viruses

Abstract

Long-distance host-independent virus dispersal is poorly understood, especially for viruses found in isolated ecosystems. To demonstrate a possible dispersal mechanism, we show that bacteriophage T4, archaeal virus SSV-K and Vaccinia are reversibly inactivated by mineralization in silica under conditions similar to volcanic hot springs. By contrast, bacteriophage PRD1 is not silicified. Moreover silicification provides viruses with remarkable desiccation resistance, which could allow extensive aerial dispersal.

Authors:
; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1177338
Report Number(s):
PNNL-SA-99058
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Virology, 87(24):13927-13929
Country of Publication:
United States
Language:
English
Subject:
Reversible Inactivation and Desiccation Tolerance of Silicified Viruses

Citation Formats

Laidler, James J., Shugart, Jessica A., Cady, Sherry L., Bahjat, Keith S., and Stedman, Kenneth M. Reversible Inactivation and Desiccation Tolerance of Silicified Viruses. United States: N. p., 2013. Web. doi:10.1128/JVI.02825-13.
Laidler, James J., Shugart, Jessica A., Cady, Sherry L., Bahjat, Keith S., & Stedman, Kenneth M. Reversible Inactivation and Desiccation Tolerance of Silicified Viruses. United States. doi:10.1128/JVI.02825-13.
Laidler, James J., Shugart, Jessica A., Cady, Sherry L., Bahjat, Keith S., and Stedman, Kenneth M. Tue . "Reversible Inactivation and Desiccation Tolerance of Silicified Viruses". United States. doi:10.1128/JVI.02825-13.
@article{osti_1177338,
title = {Reversible Inactivation and Desiccation Tolerance of Silicified Viruses},
author = {Laidler, James J. and Shugart, Jessica A. and Cady, Sherry L. and Bahjat, Keith S. and Stedman, Kenneth M.},
abstractNote = {Long-distance host-independent virus dispersal is poorly understood, especially for viruses found in isolated ecosystems. To demonstrate a possible dispersal mechanism, we show that bacteriophage T4, archaeal virus SSV-K and Vaccinia are reversibly inactivated by mineralization in silica under conditions similar to volcanic hot springs. By contrast, bacteriophage PRD1 is not silicified. Moreover silicification provides viruses with remarkable desiccation resistance, which could allow extensive aerial dispersal.},
doi = {10.1128/JVI.02825-13},
journal = {Journal of Virology, 87(24):13927-13929},
number = ,
volume = ,
place = {United States},
year = {Tue Nov 19 00:00:00 EST 2013},
month = {Tue Nov 19 00:00:00 EST 2013}
}
  • Desiccation tolerance is an ancestral feature of land plants and is still retained in non-vascular plants such as bryophytes and some vascular plants. However, except for seeds and spores, this trait is absent in vegetative tissues of vascular plants. Although many studies have focused on understanding the molecular basis underlying desiccation tolerance using transcriptome and proteome approaches, the critical molecular differences between desiccation tolerant plants and non-desiccation plants are still not clear. The moss Physcomitrella patens cannot survive rapid desiccation under laboratory conditions, but if cells of the protonemata are treated by the phytohormone abscisic acid (ABA) prior to desiccation,more » it can survive 24 h exposure to desiccation and regrow after rehydration. The desiccation tolerance induced by ABA (AiDT) is specific to this hormone, but also depends on a plant transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3). Here we report the comparative proteomic analysis of AiDT between wild type and ABI3 deleted mutant (Δabi3) of P. patens using iTRAQ (Isobaric Tags for Relative and Absolute Quantification). From a total of 1980 unique proteins that we identified, only 16 proteins are significantly altered in Δabi3 compared to wild type after desiccation following ABA treatment. Among this group, three of the four proteins that were severely affected in Δabi3 tissue were Arabidopsis orthologous genes, which were expressed in maturing seeds under the regulation of ABI3. These included a Group 1 late embryogenesis abundant (LEA) protein, a short-chain dehydrogenase, and a desiccation-related protein. Our results suggest that at least three of these proteins expressed in desiccation tolerant cells of both Arabidopsis and the moss are very likely to play important roles in acquisition of desiccation tolerance in land plants. Furthermore, our results suggest that the regulatory machinery of ABA- and ABI3-mediated gene expression for desiccation tolerance might have evolved in ancestral land plants before the separation of bryophytes and vascular plants. - Highlights: • Large-scale proteomics highlighted proteins related to plant desiccation tolerance. • The proteins were regulated by both the phytohormone ABA and ABI3. • The proteins accumulated in desiccation tolerant cells of both Arabidopsis and moss. • Evolutionary origin of regulatory machinery for desiccation tolerance is proposed.« less
  • The anatomically simple plants that first colonized land must have acquired molecular and biochemical adaptations to drought stress. Abscisic acid (ABA) coordinates responses leading to desiccation tolerance in all land plants. We identified ABA nonresponsive mutants in the model bryophyte Physcomitrella patens and genotyped a segregating population to map and identify the ABA NON-RESPONSIVE (ANR) gene encoding a modular protein kinase comprising an N-terminal PAS domain, a central EDR domain, and a C-terminal MAPKKK-like domain. anr mutants fail to accumulate dehydration tolerance-associated gene products in response to drought, ABA, or osmotic stress and do not acquire ABA-dependent desiccation tolerance. Themore » crystal structure of the PAS domain, determined to 1.7-Å resolution, shows a conserved PAS-fold that dimerizes through a weak dimerization interface. Targeted mutagenesis of a conserved tryptophan residue within the PAS domain generates plants with ABA nonresponsive growth and strongly attenuated ABA-responsive gene expression, whereas deleting this domain retains a fully ABA-responsive phenotype. ANR orthologs are found in early-diverging land plant lineages and aquatic algae but are absent from more recently diverged vascular plants. Lastly, we propose that ANR genes represent an ancestral adaptation that enabled drought stress survival of the first terrestrial colonizers but were lost during land plant evolution.« less
  • Plants close their stomata during drought to avoid excessive water loss, but species differ in respect to the drought severity at which stomata close. The stomatal closure point is related to xylem anatomy and vulnerability to embolism, but it also has implications for phloem transport, and possibly phloem anatomy to allow sugar transport at low water potentials. Desiccation tolerant plants that close their stomata at severe drought should have smaller xylem conduits and/or fewer and smaller inter-conduit pits to reduce vulnerability to embolism, but more phloem tissue and larger phloem conduits compared to plants that avoid desiccation. These anatomical differencesmore » could be expected to increase in response to long-term reduction in precipitation. To test these hypotheses we used tridimensional synchroton X-ray microtomograph and light microscope imaging of combined xylem and phloem tissues of two coniferous species: one-seed juniper (Juniperus monosperma) and piñon pine (Pinus edulis) subjected to precipitation manipulation treatments. These species show different xylem vulnerability to embolism, contrasting desiccation tolerance, and stomatal closure points. Our results support the hypothesis that desiccation tolerant plants require higher phloem transport capacity than desiccation avoiding plants, but this can be gained through various anatomical adaptations in addition to changing conduit or tissue size.« less