skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 25 Years Of Environmental Remediation In The General Separations Area Of The Savannah River Site: Lessons Learned About What Worked And What Did Not Work In Soil And Groundwater Cleanup

Conference ·
OSTI ID:1177019
 [1];  [1];  [1];  [2]
  1. Savannah River Nuclear Solutions (SRNS), Aiken, SC (United States)
  2. Savannah River Site (SRS), Aiken, SC (United States)

The Savannah River Site (SRS) is owned and administered by the US Department of Energy (DOE). SRS covers an area of approximately 900 square kilometers. The General Separation Area (GSA) is located roughly in the center of the SRS and includes: radioactive material chemical separations facilities, radioactive waste tank farms, a variety of radioactive seepage basins, and the radioactive waste burial grounds. Radioactive wastes were disposed in the GSA from the mid-1950s through the mid-1990s. Radioactive operations at the F Canyon began in 1954; radioactive operations at H Canyon began in 1955. Waste water disposition to the F and H Seepage Basins began soon after operations started in the canyons. The Old Radioactive Waste Burial Ground (ORWBG) began operations in 1952 to manage solid waste that could be radioactive from all the site operations, and ceased receiving waste in 1972. The Mixed Waste Management Facility (MWMF) and Low Level Radioactive Waste Disposal Facility (LLRWDF) received radioactive solid waste from 1969 until 1995. Environmental legislation enacted in the 1970s, 1980s, and 1990s led to changes in waste management and environmental cleanup practices at SRS. The US Congress passed the Clean Air Act in 1970, and the Clean Water Act in 1972; the Resource Conservation and Recovery Act (RCRA) was enacted in 1976; the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA) was enacted by Congress in 1980; the Federal Facilities Compliance Act (FFCA) was signed into law in 1992. Environmental remediation at the SRS essentially began with a 1987 Settlement Agreement between the SRS and the State of South Carolina (under the South Carolina Department of Health and Environmental Control - SCDHEC), which recognized linkage between many SRS waste management facilities and RCRA. The SRS manages several of the larger groundwater remedial activities under RCRA for facilities recognized early on as environmental problems. All subsequent environmental remediation projects tend to be managed under tri-party agreement (DOE, Environmental Protection Agency, and SCDHEC) through the Federal Facilities Agreement. During 25 years of environmental remediation SRS has stabilized and capped seepage basins, and consolidated and capped waste units and burial grounds in the GSA. Groundwater activities include: pump and treat systems in the groundwater, installation of deep subsurface barrier systems to manage groundwater flow, in situ chemical treatments in the groundwater, and captured contaminated groundwater discharges at the surface for management in a forest irrigation system. Over the last 25 years concentrations of contaminants in the aquifers beneath the GSA and in surface water streams in the GSA have dropped significantly. Closure of 65 waste sites and 4 RCRA facilities has been successfully accomplished. Wastes have been successfully isolated in place beneath a variety of caps and cover systems. Environmental clean-up has progressed to the stage where most of the work involves monitoring, optimization, and maintenance of existing remedial systems. Many lessons have been learned in the process. Geotextile covers outperform low permeability clay caps, especially with respect to the amount of repairs required to upkeep the drainage layers as the caps age. Passive, enhanced natural processes to address groundwater contamination are much more cost effective than pump and treat systems. SRS operated two very large pump and treat systems at the F and H Seepage Basins to attempt to limit the release of tritium to Fourmile Branch, a tributary of the Savannah River. The systems were designed to extract contaminated acidic groundwater, remove all contamination except tritium (not possible to remove the tritium from the water), and inject the tritiated groundwater up-gradient of the source area and the plume. The concept was to increase the travel time of the injected water for radioactive decay of the tritium. The two systems were found to be non-effective and potentially mobilizing more contamination. SRS invested approximately $50 million in construction and approximately $100 million in 6 years of operation. The H Seepage Basin pump and treat system was replaced by a series of subsurface barriers that alters the groundwater velocity; the F Seepage Basin pump and treat system was replaced by subsurface barriers forming a funnel and gate augmented by chemical treatment within the gates. These replacement systems are mostly passive and cost approximately $13 million to construct, and have reduced the tritium flux to Fourmile Branch, in these plumes, by over 70%. SRS manages non-acidic tritiated groundwater releases to Fourmile Branch from the southwest plume of the MWMF with a forest irrigation system. Tritiated water is captured with a sheetpile dam below the springs that caused releases to Fourmile Branch. Water from the irrigation pond is pumped to a filter plant prior to irrigation of approximately 26 hectares of mixed forest and developing pine plantation. SRS has almost achieved a 70% reduction in tritium flux to the Branch from this plume. The system cost approximately $5 million to construct with operation cost of approximately $500K per year. In conclusion, many lessons have been learned in 25 years of relatively aggressive remedial activities in the GSA. Geotextile covers outperform low permeability clay caps, especially with respect to the amount of repairs required to upkeep the drainage layers as the caps age. Passive, enhanced natural processes to address groundwater contamination are much more cost effective than pump and treat systems. In water management situations with non-accumulative contaminants (tritium, VOCs, etc.) irrigation in a forest setting can be very effective.

Research Organization:
Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC09-08SR22470
OSTI ID:
1177019
Report Number(s):
SRNS-STI-2015-00096; TRN: US1600118
Resource Relation:
Conference: Waste Management 2015 (WM2015), Phoenix, AZ (United States), 15-19 Mar 2015
Country of Publication:
United States
Language:
English