skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Full-Scale Testing of the Ambient Pressure, Acid-Dissolution Front-End Process for the Current 99Mo Recovery Processes

Technical Report ·
DOI:https://doi.org/10.2172/1172029· OSTI ID:1172029
 [1];  [1];  [1];  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Division

The Global Threat Reduction Initiative (GTRI) Conversion Program is actively developing technologies for converting civilian facilities that use high enriched uranium (HEU) to low enriched uranium (LEU) fuels and targets. The conversion of conventional HEU targets to LEU for the production of 99Mo production requires approximately five times the uranium in a target to maintain the 99Mo yield on a per-target basis. Under GTRI, Argonne National Laboratory (Argonne) is developing two frontend options for current 99Mo production processes to allow the use of LEU-foil targets. In both processes, the aim is to produce a frontend product that is compatible with current 99Mo purification operations and will provide the same or a higher yield of 99Mo for the same number of irradiated targets. The two frontend processes under development as part of this project are (1) the dissolution of irradiated LEU foil (up to 250 g in a single batch) and nickel fission recoil barrier in nitric acid at ambient pressure; and (2) the electrochemical dissolution of LEU foil in series of steps that produces an alkaline (basic) solution feed for 99Mo purification. This report describes results from performance tests and design optimization of the ambient pressure, nitric-acid-dissolver system. The design, fabrication, and performance test planning for this system are described in more detail in previous reports (Jerden et al. 2011a,b, 2012). Full-scale demonstrations of both of the frontend processes using irradiated uranium foils are planned to be performed at Oak Ridge National Laboratory this fiscal year.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA), Office of Defense Nuclear Nonproliferation
DOE Contract Number:
AC02-06CH11357
OSTI ID:
1172029
Report Number(s):
ANL/CSE-14/7; 106364
Country of Publication:
United States
Language:
English