skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF–CMAQ: model description, development, evaluation and regional analysis

Journal Article · · Atmospheric Chemistry and Physics (Online)

This study implemented first, second and glaciation aerosol indirect effects (AIE) on resolved clouds in the two-way coupled Weather Research and Forecasting Community Multiscale Air Quality (WRF–CMAQ) modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQ-predicted aerosol distributions and WRF meteorological conditions. The performance of the newly developed WRF–CMAQ model, with alternate Community Atmospheric Model (CAM) and Rapid Radiative Transfer Model for GCMs (RRTMG) radiation schemes, was evaluated with observations from the Clouds and the See http://ceres.larc.nasa.gov/. Earth's Radiant Energy System (CERES) satellite and surface monitoring networks (AQS, IMPROVE, CASTNET, STN, and PRISM) over the continental US (CONUS) (12 km resolution) and eastern Texas (4 km resolution) during August and September of 2006. The results at the Air Quality System (AQS) surface sites show that in August, the normalized mean bias (NMB) values for PM2.5 over the eastern US (EUS) and the western US (WUS) are 5.3% (-0.1%) and 0.4% (-5.2%) for WRF–CMAQ/CAM (WRF–CMAQ/RRTMG), respectively. The evaluation of PM2.5 chemical composition reveals that in August, WRF–CMAQ/CAM (WRF–CMAQ/RRTMG) consistently underestimated the observed SO42- by -23.0% (-27.7%), -12.5% (-18.9%) and -7.9% (-14.8%) over the EUS at the Clean Air Status Trends Network (CASTNET), Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciated Trends Network (STN) sites, respectively. Both configurations (WRF–CMAQ/CAM, WRF–CMAQ/RRTMG) overestimated the observed mean organic carbon (OC), elemental carbon (EC) and and total carbon (TC) concentrations over the EUS in August at the IMPROVE sites. Both configurations generally underestimated the cloud field (shortwave cloud forcing, SWCF) over the CONUS in August due to the fact that the AIE on the subgrid convective clouds was not considered when the model simulations were run at the 12 km resolution. This is in agreement with the fact that both configurations captured SWCF and longwave cloud forcing (LWCF) very well for the 4 km simulation over eastern Texas, when all clouds were resolved by the finer resolution domain. The simulations of WRF–CMAQ/CAM and WRF–CMAQ/RRTMG show dramatic improvements for SWCF, LWCF, cloud optical depth (COD), cloud fractions and precipitation over the ocean relative to those of WRF default cases in August. The model performance in September is similar to that in August, except for a greater overestimation of PM2.5 due to the overestimations of SO42-, NH4+, NO3-, and TC over the EUS, less underestimation of clouds (SWCF) over the land areas due to the lower SWCF values, and fewer convective clouds in September. Finally, this work shows that inclusion of indirect aerosol effect treatments in WRF–CMAQ represents a significant advancement and milestone in air quality modeling and the development of integrated emissions control strategies for air quality management and climate change mitigation.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1167306
Report Number(s):
PNNL-SA-97673; KP1703020
Journal Information:
Atmospheric Chemistry and Physics (Online), Vol. 14, Issue 20; ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English

Similar Records

Assessment of long-term WRF–CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States
Journal Article · Tue Nov 03 00:00:00 EST 2015 · Atmospheric Chemistry and Physics (Online) · OSTI ID:1167306

Transport of anthropogenic and biomass burning aerosols from Europe to the Arctic during spring 2008
Journal Article · Fri Apr 10 00:00:00 EDT 2015 · Atmospheric Chemistry and Physics (Online) · OSTI ID:1167306

Direct and semi-direct radiative forcing of biomass-burning aerosols over the southeast Atlantic (SEA) and its sensitivity to absorbing properties: a regional climate modeling study
Journal Article · Tue Nov 10 00:00:00 EST 2020 · Atmospheric Chemistry and Physics (Online) · OSTI ID:1167306