skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Vacancies and impurities in aluminum and magnesium

Journal Article · · Physical Review, B: Condensed Matter
;  [1];  [2];  [1]
  1. Department of Physics, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)
  2. Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States)

The vacancy formation energies and (Mg, Al, and Si) impurity heats of solution are calculated for Al and Mg using a first-principles pseudopotential approach and large supercells. While the interaction of the defects considered here are already negligible for reasonably small unit cells, adequate sampling of the Brillouin zone is found to be essential for these metallic systems, even for systems containing more than 100 atoms per unit cell; e.g., the vacancy formation energy of Al for 108 atoms per cell has the incorrect sign if only the {Gamma} point is sampled. When the volume and structural relaxations are treated consistently, heats of formation and solution and relaxation volumes are obtained that are in good agreement with the available experimental data. Simple trends in the relaxations around the impurities in the various materials can be understood in terms of the size of the impurities compared with the host atoms. Contrary to some commonly used models, the energetics of the impurities are found to be dominated by electronic, rather than elastic, contributions. The defect-induced changes to the local electronic structure are also discussed.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States)
DOE Contract Number:
AC02-76CH00016
OSTI ID:
116613
Journal Information:
Physical Review, B: Condensed Matter, Vol. 52, Issue 9; Other Information: PBD: 1 Sep 1995
Country of Publication:
United States
Language:
English

Similar Records

Energetics of vacancy and substitutional impurities in aluminum bulk and clusters
Journal Article · Thu May 01 00:00:00 EDT 1997 · Physical Review, B: Condensed Matter · OSTI ID:116613

Self-consistent electronic structure of a vacancy in aluminum
Journal Article · Sun Nov 15 00:00:00 EST 1981 · Phys. Rev. B: Condens. Matter; (United States) · OSTI ID:116613

Development of the Local (Site) Symmetry Method in the Supercell Model for a Crystal with an Impurity
Journal Article · Sat Jun 15 00:00:00 EDT 2019 · Physics of the Solid State · OSTI ID:116613