Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Finite-element-method expectation values for correlated two-electron wave functions

Journal Article · · Physical Review A
 [1]
  1. Institut fuer Molekulare Biotechnologie (IMB), Beutenbergstrasse 11, D-07745 Jena (Germany)
The Schroedinger equation for the ground state of correlated two-electron atoms is treated by an accurate finite-element method (FEM) yielding energy eigenvalues of {minus}2.903 724 377 021 a.u. for the helium atom and {minus}0.527 751 016 532 a.u. for the hydrogen ion H{sup {minus}}. By means of an adaptive multilevel grid refinement the FEM energy eigenvalue is improved to a precision of 1{times}10{sup {minus}11} a.u., which is comparable to results obtained with sophisticated global basis sets. The local and overall precision of the FEM wave function approximation is studied and discussed. Benchmark values for the expectation values {l_angle}{ital r}{sup 2}{r_angle}, {l_angle}{ital r}{r_angle}, {l_angle}1/{ital r}{r_angle}, and {l_angle}1/{ital r}{sub 12}{r_angle} are presented.
OSTI ID:
115902
Journal Information:
Physical Review A, Journal Name: Physical Review A Journal Issue: 3 Vol. 52; ISSN 1050-2947; ISSN PLRAAN
Country of Publication:
United States
Language:
English

Similar Records

Solving the Schroedinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction (ICI) method
Journal Article · Thu Dec 13 23:00:00 EST 2007 · Journal of Chemical Physics · OSTI ID:21024603

Comments on explicitly correlated wave functions for the ground state of the helium atom
Journal Article · Sat Oct 01 00:00:00 EDT 1977 · Phys. Rev., A; (United States) · OSTI ID:7209907

How Accurately Does the Free Complement Wave Function of a Helium Atom Satisfy the Schroedinger Equation?
Journal Article · Thu Dec 11 23:00:00 EST 2008 · Physical Review Letters · OSTI ID:21179972