skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Passive Wireless Sensors.


Abstract not provided.

Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Proposed for presentation at the Caneus Conference held March 27-28, 2007 in Dallas, TX.
Country of Publication:
United States

Citation Formats

Brocato, Robert Wesley. Passive Wireless Sensors.. United States: N. p., 2007. Web.
Brocato, Robert Wesley. Passive Wireless Sensors.. United States.
Brocato, Robert Wesley. Thu . "Passive Wireless Sensors.". United States. doi:.
title = {Passive Wireless Sensors.},
author = {Brocato, Robert Wesley},
abstractNote = {Abstract not provided.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Mar 01 00:00:00 EST 2007},
month = {Thu Mar 01 00:00:00 EST 2007}

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Abstract not provided.
  • The safety of nuclear infrastructures may involve the monitoring of many parameters in harsh environments (high radiation level, high temperature, high pressure,..). If technological solutions exist for transducers part in such environments, the electronic part used in reader is not appropriate and still a challenging task. Well-known solutions to remove the electronic part from the harsh environment consist of connecting the transducer and the reader by long electrical wires or performing ex situ remote sensing. However wires may practically be difficult to implement while ex situ measurements are not compatible with on line monitoring. Wireless and passive sensors working inmore » harsh environments could be an appropriate solution for the remote sensing of critical parameters. Passive sensors without electronics in the sensing unit are available (e.g., SAW sensors) but they suffer from short reading range (typically lower than 10 meters). In order to overcome this range limitation a new class of electromagnetic transducers was developed in the mid-2000's. The operating principle is based on the modification of the properties of high-frequency (>> 1 GHz) passive electromagnetic devices by the quantity to be measured. Based on this principle a wide range of sensing properties can be addressed and a large number of materials can be chosen. Moreover the use of high frequency allows reducing the size of the sensor elements (antenna, transducer) and enhancing the immunity to multi-path. Several principles of RF transducers have been already validated by LAAS-CNRS (e;g; pressure, temperature, stress) as well as radar-based solution for the wireless long-range sensors interrogation. The sensor dosimeter exploit here the known property of Hydrogen-Pressure Dosimeters (HPD) for which the polymer material dehydrogenates under nuclear irradiation. The transducer principle is described. The irradiation will generate the out-gazing (hydrogen) of the polymer inside a micro-chamber. The resulting overpressure leads to the deflection of a silicon membrane which modifies the resonant frequency of the RF resonator. Tests structures have been designed in order to quantify the HDPE out-gazing inside a micro-cavity by measuring the deflection of a boss silicon membrane with a mechanical profiler. A specific set up using interferometry method has been also developed to evaluate the pressure generated inside the micro-cavity. The procedure consists in applying a pressure that pushes the membrane to recover a flat membrane. This condition is monitored thanks to the extinction of the Newton rings. Irradiations have been performed up to 30 kGy using 6 MeV focused e-beam providing by electron accelerator. Membrane deflection and generated pressure around 0.2 μm/mg{sub HDPE}/kGy and 70 mbar/mg{sub HDPE}/kGy has been obtained for a 70 μm thick membrane. In order to characterize the hermetic sealing of the micro-chamber under hydrogen over-pressure, membrane deflection after irradiation has been recorded during 50 days. The variations of membrane deflection are randomly distributed and generally lower than ±5%, showing a good hermeticity during this period. (authors)« less
  • The overall objective of this project is to develop high-temperature wireless passive ceramic sensors for online, real-time monitoring combustion turbines. During this project period, we have successfully demonstrated temperature sensors up to 1300°C and pressure sensors up to 800°C. The temperature sensor is based on a high-Q-factor dielectric resonator and the pressure sensor utilizes the evanescent-mode cavity to realize a pressure-sensitive high-Q-factor resonator. Both sensors are efficiently integrated with a compact antenna. These sensors are wirelessly interrogated. The resonant frequency change corresponding to either temperature or pressure can be identified using a time-domain gating technique. The sensors realized in thismore » project can survive harsh environments characterized by high temperatures (>1000°C) and corrosive gases, owing to the excellent material properties of polymer-derived ceramics (PDCs) developed at University of Central Florida. It is anticipated that this work will significantly advance the capability of high-temperature sensor technologies and be of a great benefit to turbine industry and their customers.« less
  • University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO 2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO 2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5more » times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO 2 . The sensor frequency change was around 300ppm for pure CO 2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.« less
  • The overall objective of this project is to develop a high-temperature wireless passive ceramic strain sensor for online, real-time monitoring turbine blade.