skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Uniaxial Tensile Response of Porous and Microcracked Ceramic Materials

Journal Article · · Journal of the American Ceramic Society
DOI:https://doi.org/10.1111/jace.12720· OSTI ID:1156710

The uniaxial tensile stress-strain behavior of three porous ceramic materials was determined at ambient conditions. Test specimens in the form of thin beams were obtained from the walls of diesel particulate filter honeycombs and tested using a microtesting system. A digital image correlation technique was used to obtain full-field 2D in-plane surface displacement maps during tensile loading, and in turn, the 2D strains obtained from displacement fields were used to determine the Secant modulus, Young s modulus and initial Poisson s ratio of the three porous ceramic materials. Successive unloading-reloading experiments were performed at different levels of stress to decouple the linear elastic, anelastic and inelastic response in these materials. It was found that the stress-strain response of these materials was non-linear and that the degree of nonlinearity is related to the initial microcrack density and evolution of damage in the material.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1156710
Journal Information:
Journal of the American Ceramic Society, Vol. 97, Issue 3; ISSN 0002-7820
Country of Publication:
United States
Language:
English