Remote detection of trace effluents using Resonance Raman spectroscopy: Field results and evaluation
Resonance Raman spectroscopy (RRS) possesses many characteristics that are important for detecting, identifying and monitoring chemical effluents. Raman scattering is a coherent, inelastic, two-photon scattering process where an exciting photon of energy h{nu} promotes a molecule to a virtual level and the subsequently emitted photon is shifted in frequency in accordance with the rotational-vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. Under resonance enhancement, the Raman scattering cross-sections have been observed to increase up to 6 orders of magnitude above the normal scattering cross-sections, thereby providing the practical basis for a remote chemical sensor. Some of the other advantages that a Raman sensor possesses are: (1) very high selectivity (chemical specific fingerprints), (2) independence of the spectral fingerprint on the excitation wavelength (ability to monitor in the solar blind region), (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk), (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid or solutions), (5) no absolute calibration is necessary because all Raman signals observed from a given species can be compared with the Raman signal for N{sub 2}, whose concentration is known very accurately, and (6) insensitivity of the Raman signature to environmental conditions (no quenching, or interference from water vapor). In this presentation, the technology of resonance Raman spectroscopy as applied to the detection of narcotics production activities will be presented along with some recent experimental results.
- Research Organization:
- Brookhaven National Lab., Upton, NY (United States)
- Sponsoring Organization:
- USDOE, Washington, DC (United States)
- DOE Contract Number:
- AC02-76CH00016
- OSTI ID:
- 115629
- Report Number(s):
- BNL--62155; CONF-9510221--1; SSN--95-34; ON: DE96000424
- Country of Publication:
- United States
- Language:
- English
Similar Records
Monitoring and trace detection of hazardous waste and toxic chemicals using resonance Raman spectroscopy
Application of resonance Raman spectroscopy as a nuclear proliferation detection technology