Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

A model for designing functionally gradient material joints

Conference ·
OSTI ID:115524
Joining of dissimilar materials into hybrid structures to meet severe design and service requirements is becoming more necessary and common. Joints between heat-resisting or refractory metals and refractory or corrosion resistant ceramics and intermetallics are especially in demand. Before resorting to a more complicated but versatile finite element analysis (FEA) model, a simpler, more user-friendly analytical layer-model based on a thin plate assumption was developed and tested. The model has been successfully used to design simple FGM joints between Ni-base superalloys or Mo and SiC, Ni{sub 3}Al or Al{sub 2}O{sub 3} using self-propagating high-temperature or pressurized composition synthesis for joining. Cases are presented to demonstrate capability for: (1) varying processing temperature excursions or service gradients; (2) varying overall joint thickness for a fixed number of uniform composition steps; (3) varying the number of uniform steps for a particular overall joint thickness; (4) varying the thickness and/or composition of individual steps for a constant overall thickness; and (5) altering the constitutive law for mixed-material composition steps. The model provides a useful joint design tool for process R&D.
OSTI ID:
115524
Report Number(s):
CONF-9404233--
Country of Publication:
United States
Language:
English