Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Quantifying weld solidification cracking susceptibility using the varestraint test

Conference ·
OSTI ID:115495

Since the introduction of the original Varestraint concept in the 1960`s, the longitudinal- and transverse-type Varestraint tests have become the most widely utilized techniques for quantifying weld solidification cracking susceptibility. Conventionally, cracking susceptibility is assessed by threshold strain to cause cracking and the degree of cracking as quantified by total crack strain to cause cracking and the degree of cracking as quantified by total crack length or maximum crack length. Although material-specific quantifications such as the brittle temperature range (BTR) have been proposed for the transverse-type test, similar quantifications have not been developed for the longitudinal type test. Various alloys including 304, 310, 316L, A-286, AL6XN, 20Cb-3, RA253, and RA333 stainless steels, 625, 690, and 718 nickel-base alloys, 2090, 2219, 5083, and 6061 aluminum alloys were investigated using both longitudinal- and transverse-type Varestraint tests. Tests were performed using a newly developed, computer-controlled Varestraint unit equipped with a 3-axis movable torch, spring-loaded fixture and a servo-hydraulic loading system. It was found that extensive cracking was observed in the fusion zone emanating radially from the solid-liquid inteface toward the fusion boundary in the longitudinal-type test, while weld centerline cracking was prevalent in the transverse-type test. The theoretical basis for the formation of the CSR is that liquation-related cracking only occurs in a certain temperature range known as the BTR. The detailed procedure in the development of the CSR in the fusion zone is described and discussed. This approach allows a weldability data base to be created and the comparison of results from different laboratories using different test techniques.

OSTI ID:
115495
Report Number(s):
CONF-9404233--
Country of Publication:
United States
Language:
English