Validation of the THIRMAL-1 melt-water interaction code
- Argonne National Lab., IL (United States)
The THIRMAL-1 computer code has been used to calculate nonexplosive LWR melt-water interactions both in-vessel and ex-vessel. To support the application of the code and enhance its acceptability, THIRMAL-1 has been compared with available data from two of the ongoing FARO experiments at Ispra and two of the Corium Coolant Mixing (CCM) experiments performed at Argonne. THIRMAL-1 calculations for the FARO Scoping Test and Quenching Test 2 as well as the CCM-5 and -6 experiments were found to be in excellent agreement with the experiment results. This lends confidence to the modeling that has been incorporated in the code describing melt stream breakup due to the growth of both Kelvin-Helmholtz and large wave instabilities, the sizes of droplets formed, multiphase flow and heat transfer in the mixing zone surrounding and below the melt metallic phase. As part of the analysis of the FARO tests, a mechanistic model was developed to calculate the prefragmentation as it may have occurred when melt relocated from the release vessel to the water surface and the model was compared with the relevant data from FARO.
- Research Organization:
- Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology; American Nuclear Society, La Grange Park, IL (United States); American Inst. of Chemical Engineers, New York, NY (United States); American Society of Mechanical Engineers, New York, NY (United States); Canadian Nuclear Society, Toronto, ON (Canada); European Nuclear Society (ENS), Bern (Switzerland); Atomic Energy Society of Japan, Tokyo (Japan); Japan Society of Multiphase Flow, Kyoto (Japan)
- OSTI ID:
- 115098
- Report Number(s):
- NUREG/CP--0142-Vol.3; CONF-950904--Vol.3; ON: TI95017079
- Country of Publication:
- United States
- Language:
- English
Similar Records
Comparison of THIRMAL-1 predictions with FARO and CCM experiments
Heatup of the TMI-2 (Three Mile Island Unit 2) lower head during core relocation