Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Final Technical Report "Multiscale Simulation Algorithms for Biochemical Systems"

Technical Report ·
DOI:https://doi.org/10.2172/1148588· OSTI ID:1148588
 [1]
  1. University of California, Santa Barbara

Biochemical systems are inherently multiscale and stochastic. In microscopic systems formed by living cells, the small numbers of reactant molecules can result in dynamical behavior that is discrete and stochastic rather than continuous and deterministic. An analysis tool that respects these dynamical characteristics is the stochastic simulation algorithm (SSA, Gillespie, 1976), a numerical simulation procedure that is essentially exact for chemical systems that are spatially homogeneous or well stirred. Despite recent improvements, as a procedure that simulates every reaction event, the SSA is necessarily inefficient for most realistic problems. There are two main reasons for this, both arising from the multiscale nature of the underlying problem: (1) stiffness, i.e. the presence of multiple timescales, the fastest of which are stable; and (2) the need to include in the simulation both species that are present in relatively small quantities and should be modeled by a discrete stochastic process, and species that are present in larger quantities and are more efficiently modeled by a deterministic differential equation (or at some scale in between). This project has focused on the development of fast and adaptive algorithms, and the fun- damental theory upon which they must be based, for the multiscale simulation of biochemical systems. Areas addressed by this project include: (1) Theoretical and practical foundations for ac- celerated discrete stochastic simulation (tau-leaping); (2) Dealing with stiffness (fast reactions) in an efficient and well-justified manner in discrete stochastic simulation; (3) Development of adaptive multiscale algorithms for spatially homogeneous discrete stochastic simulation; (4) Development of high-performance SSA algorithms.

Research Organization:
University of California, Santa Barbara
Sponsoring Organization:
USDOE; USDOE Office of Science (SC)
DOE Contract Number:
FG02-04ER25621
OSTI ID:
1148588
Report Number(s):
DOE-UCSB-ER25621
Country of Publication:
United States
Language:
English

Similar Records

Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems
Journal Article · Fri Jul 01 00:00:00 EDT 2005 · Journal of Computational Physics · OSTI ID:20687239

An adaptive algorithm for simulation of stochastic reaction-diffusion processes
Journal Article · Tue Jan 19 23:00:00 EST 2010 · Journal of Computational Physics · OSTI ID:21333922

Hybrid framework for the simulation of stochastic chemical kinetics
Journal Article · Wed Nov 30 23:00:00 EST 2016 · Journal of Computational Physics · OSTI ID:22622216