Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Automatic Labeling for Entity Extraction in Cyber Security

Conference ·
OSTI ID:1143555
Timely analysis of cyber-security information necessitates automated information extraction from unstructured text. While state-of-the-art extraction methods produce extremely accurate results, they require ample training data, which is generally unavailable for specialized applications, such as detecting security related entities; moreover, manual annotation of corpora is very costly and often not a viable solution. In response, we develop a very precise method to automatically label text from several data sources by leveraging related, domain-specific, structured data and provide public access to a corpus annotated with cyber-security entities. Next, we implement a Maximum Entropy Model trained with the average perceptron on a portion of our corpus (~750,000 words) and achieve near perfect precision, recall, and accuracy, with training times under 17 seconds.
Research Organization:
Oak Ridge National Laboratory (ORNL)
Sponsoring Organization:
ORNL work for others
DOE Contract Number:
AC05-00OR22725
OSTI ID:
1143555
Country of Publication:
United States
Language:
English