Investigation of combinatorial coevaporated thin film Cu{sub 2}ZnSnS{sub 4}. I. Temperature effect, crystalline phases, morphology, and photoluminescence
Cu{sub 2}ZnSnS{sub 4} is a promising low-cost, nontoxic, earth-abundant absorber material for thin-film solar cell applications. In this study, combinatorial coevaporation was used to synthesize individual thin-film samples spanning a wide range of compositions at low (325 °C) and high (475 °C) temperatures. Film composition, grain morphology, crystalline-phase and photo-excitation information have been characterized by x-ray fluorescence, scanning electron microscopy, x-ray diffraction, Raman spectroscopy, and photoluminescence imaging and mapping. Highly textured columnar grain morphology is observed for film compositions along the ZnS-Cu{sub 2}ZnSnS{sub 4}-Cu{sub 2}SnS{sub 3} tie line in the quasi-ternary Cu{sub 2}S-ZnS-SnS{sub 2} phase system, and this effect is attributed tomore »