skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Advanced Natural Gas Reciprocating Engine(s)

Technical Report ·
DOI:https://doi.org/10.2172/1126696· OSTI ID:1126696

Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work has consisted of both modeling and single cylinder engine experiments to quantify DIGN performance. The air handling systems of natural gas engines dissipate a percentage of available energy as a result of both flow losses and turbomachinery inefficiencies. An analytical study was initiated to increase compressor efficiency by employing a 2-stage inter-cooled compressor. Caterpillar also studied a turbo-compound system that employs a power turbine to recover energy from the exhaust gases for improved engine efficiency. Several other component and system investigations were undertaken during the final phase of the program to reach the ultimate ARES goals. An intake valve actuation system was developed and tested to improve engine efficiency, durability and load acceptance. Analytical modeling and materials testing were performed to evaluate the performance of steel pistons and compacted graphite iron cylinder head. Effort was made to improve the detonation sensing system by studying and comparing the performance of different pressure sensors. To reduce unburned hydrocarbon emissions, different camshafts were designed and built to investigate the effect of exhaust valve opening timing and value overlap. 1-D & 3-D coupled simulation was used to study intake and exhaust manifold dynamics with the goal of reducing load in-balance between cylinders. Selective catalytic reduction with on-board reductant generation to reduce NOx emissions was also engine tested. An effective mean to successfully deploy ARES technologies into the energy markets is to deploy demonstration projects in the field. In 2010, NETL and Caterpillar agreed to include a new “opportunity fuel” deliverable and two field demonstrations in the ARES program. An Organic Rankine Cycle system was designed with production intent incorporating lessons learned from the Phase II demonstration. Unfortunately, business conditions caused Caterpillar to cancel this demonstration in 2011. Nonetheless, Caterpillar partnered with a local dealer to deploy an ARES class engine using syngas from a biomass gasifier as the DE-FC26-01CH11079 primary combustion fuel in Gleason, TN. Upon the successful start-up and commissioning of the demonstration unit, ownership of the system was transferred to the dealer. In order to further our understanding of syngas combustion, a fundamental combustion study on syngas combustion at high pressure and lean condition was conducted through the collaboration with University of Southern California. A Methane program was also developed to rate engine performance for various compositions of syngas using empirical data obtained at CSU. While much work remains in terms of extending and integrating these developments into commercial products, it is evident that engine manufacturers on our own or through private consortium efforts could not have overcome the financial hurdles to drive these improvements into reciprocating engine and system capabilities, helping maintain the natural gas reciprocating engine power generation technology as a strong option for electric power markets, both in the United States and worldwide.

Research Organization:
Caterpillar Incorporated
Sponsoring Organization:
USDOE
DOE Contract Number:
FC26-01CH11079
OSTI ID:
1126696
Country of Publication:
United States
Language:
English

Similar Records

IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM
Technical Report · Sun May 01 00:00:00 EDT 2005 · OSTI ID:1126696

Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications
Technical Report · Sat Sep 01 00:00:00 EDT 2007 · OSTI ID:1126696

Advanced Natural Gas Reciprocating Engine(s)
Technical Report · Mon Mar 31 00:00:00 EDT 2014 · OSTI ID:1126696