skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Phosphors for near UV-Emitting LED's for Efficacious Generation of White Light

Technical Report ·
DOI:https://doi.org/10.2172/1113955· OSTI ID:1113955
 [1]
  1. Univ. of California, San Diego, CA (United States)

1) We studied phosphors for near-UV (nUV) LED application as an alternative to blue LEDs currently being used in SSL systems. We have shown that nUV light sources could be very efficient at high current and will have significantly less binning at both the chip and phosphor levels. We identified phosphor blends that could yield 4100K lamps with a CRI of approximately 80 and LPWnUV,opt equal to 179 for the best performing phosphor blend. Considering the fact that the lamps were not optimized for light coupling, the results are quite impressive. The main bottleneck is an optimum blue phosphor with a peak near 440 nm with a full width half maximum of about 25 nm and a quantum efficiency of >95%. Unfortunately, that may be a very difficult task when we want to excite a phosphor at ~400 nm with a very small margin for Stokes shift. Another way is to have all the phosphors in the blend having the excitation peak at 400 nm or slightly shorter wavelength. This could lead to a white light source with no body color and optimum efficacy due to no self-absorption effects by phosphors in the blend. This is even harder than finding an ideal blue phosphor, but not necessarily impossible. 2) With the phosphor blends identified, light sources using nUV LEDs at high current could be designed with comparable efficacy to those using blue LEDs. It will allow us to design light sources with multiple wattages using the same chips and phosphor blends simply by varying the input current. In the case of blue LEDs, this is not currently possible because varying the current will lower the efficacy at high current and alter the color point. With improvement of phosphor blends, control over CRI could improve. Less binning at the chip level and also at the phosphor blend level could reduce the cost of SSL light sources. 3) This study provided a deeper understanding of phosphor characteristics needed for LEDs in general and nUV LEDs in particular. Two students received Ph.D. degrees and three undergraduates participated in this work. Two of the undergraduate students are now in graduate school. The results were widely disseminated – 20 archival journal publications (published, accepted or in preparation) and three conference proceedings resulted. The students presented their work at 11 different national/international conferences (32 oral or poster presentations) and the PI’s delivered 12 invited, keynote or plenary lectures.

Research Organization:
Univ. of California, San Diego, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
EE0002003
OSTI ID:
1113955
Country of Publication:
United States
Language:
English