Fully quantum-state resolved study of NO{sub 2} photodissociation. Correlated NO({sup 2}{Pi}{sub {Omega}}, {nu} = 0 J,A) + O({sup 3}P{sub j}) distributions
- Univ. of Southern California, Los Angeles, CA (United States)
Relative O({sup 3}P{sub j} = 2.1.0) spin-orbit populations correlated with specific NO[{sup 2}{Pi}{sub {Omega}} = {1/2}, 3/2; {nu} = 0; f; {Lambda} = {Pi}(A{prime}), {Pi}(A{double_prime})] product states were obtained following photolysis of NO{sub 2} at excess energies E{sup {+-}} = 390, 425, and 1054 cm{sup -1}. These fully quantum state-resolved measurements were carried out by recording spatial profiles of recoiling NO({sup 2}{Pi}{sub {Omega}}, J, {Lambda}) products using polarized radiation for photolysis and state-selective laser ionization detection. The relative O({sup 3}P{sub j}) populations correlated with each NO({sup 2}{Pi}{sub {Omega}}, J, {Lambda}) state show marked fluctuations at each excess energy as a function of rotational state and {Lambda}-doublet component. The relative populations also fluctuate as a function of excess energy. The O({sup 3}P{sub j}) spin-orbit population ratios, when averaged over all measurements, exhibit distributions that are colder than statistical, in agreement with previous results. In particular, we find that, on average, O({sup 3}P{sub 1}):O({sup 3}P{sub 2}) population ratios correlated with the ground NO({sup 2}{Pi}{sub {1/2}}) state are colder than the corresponding ratios correlated with the excited NO({sup 2}{Pi}{sub 3/2}) spin-orbit state. These results are in agreement with the state-specific calculations of Katigiri and Kato. 45 refs., 12 figs., 3 tabs.
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- FG03-88ER13959
- OSTI ID:
- 111234
- Journal Information:
- Journal of Physical Chemistry, Journal Name: Journal of Physical Chemistry Journal Issue: 37 Vol. 99; ISSN JPCHAX; ISSN 0022-3654
- Country of Publication:
- United States
- Language:
- English
Similar Records
Lambda. -doublet substate specific investigation of rotational and fine structure transitions in collisions of OH with H sub 2 and D sub 2
Electronically stimulated adsorbate dissociation in the presence of an electronegative coadsorbate: (NO sub 2 +O) on Pt(111)