skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microstructural Modeling of Thermal Conductivity of High Burn-up Mixed Oxide Fuel

Journal Article · · Journal of Nuclear Materials

Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISON fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez–Lucuta model was favorable.

Research Organization:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Organization:
USDOE Office of Nuclear Energy (NE)
DOE Contract Number:
DE-AC07-05ID14517
OSTI ID:
1111033
Report Number(s):
INL/JOU-13-28405; TRN: US1400343
Journal Information:
Journal of Nuclear Materials, Vol. 444, Issue 1-3; ISSN 0022-3115
Publisher:
Elsevier
Country of Publication:
United States
Language:
English

Similar Records

Simulating Dynamic Fracture in Oxide Fuel Pellets Using Cohesive Zone Models
Conference · Sat Aug 01 00:00:00 EDT 2009 · OSTI ID:1111033

Fully-coupled engineering and mesoscale simulations of thermal conductivity in UO2 fuel using an implicit multiscale approach
Journal Article · Sat Aug 01 00:00:00 EDT 2009 · Journal of Physics: Conference Series · OSTI ID:1111033

Implement and Test 3D Mortar Contact in BISON
Technical Report · Thu Sep 01 00:00:00 EDT 2022 · OSTI ID:1111033