skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of solid-state induction modulators for high PRF accelerators

Conference ·
OSTI ID:110675
; ;  [1]
  1. Lawrence Livermore National Lab., Livermore, CA (United States); and others

Researchers at the Lawrence Livermore National Laboratory and EG&G Energy Measurements are developing a new solid-state power system for two proposed accelerators. One of the accelerators is a circular arrangement of induction cells called a recirculator. It is designed to accelerate heavy ions for an inertial fusion study that proposes to substitute heavy-ion beams for laser beams as the driver for fusion targets. The other accelerator is a linear induction accelerator for electron beams called the Advanced Radiographic Machine (ARM). Both accelerators require their induction cells to be pulsed at a very high repetition frequency (prf) for a short burst containing 5 to 15 pulses. The recirculator has a pulse schedule that varies in pulse width from 1 {mu}s to 400 ns and in prf from 50 to 150 kHz. The ARM accelerator has a pulse schedule that varies in pulse width from 1 {mu}s to 200 ns and in prf from 150 kHz to 1 MHz. The need for complex pulse agility in these accelerators led the authors to examine solid-state switching components that have an on/off capability. The intrinsic speed of solid-state switching satisfies the high prf requirements, while the on/off switching action of some semiconductor devices enables the authors to select an arbitrary pulse width. To accommodate these requirements, they selected field effect transistors (FETs) as the preferred switching elements. The same FET switching technology applies to both accelerators due to their similar pulse requirements. However, these two accelerators differ greatly in peak power and prf range. For example, the power system for the ARM accelerator must supply over 3 kA of beam-current loading to a 150-kV induction cell. For the authors research, two full-scale prototypes were built - a 5-kV induction recirculator cell and a single 15-kV induction modulator for the ARM accelerator. The authors discuss the general network features that are common to both machines, followed by performance and modeling data.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
110675
Report Number(s):
UCRL-JC-119582; CONF-950750-39; ON: DE95017853; TRN: 95:007231
Resource Relation:
Conference: 10. Institute of Electrical and Electronics Engineers (IEEE) pulsed power conference, Albuquerque, NM (United States), 10-13 Jul 1995; Other Information: PBD: 5 Jul 1995
Country of Publication:
United States
Language:
English