Anisotropy of the sublattice magnetization and magnetoresistance in Co/Re superlattices on Al{sub 2}O(1120).
[Co(20 {angstrom})/Re(6{angstrom})]{sub 20} superlattices were grown on a (11{bar 2}0) surface of a Al{sub 2}O{sub 3} single crystal, with the [0001] direction of their hcp structure in the plane of the film. The Co layers were found to be antiferromagnetically coupled (AF), with a saturating field of 6 kOe. Polarized neutron reflectivityy was used to determine the direction of the sublattice magnetization. In zero applied field, the AF moments are aligned along the Co [0001] axis. In a magnetic field H perpendicular to the Co [0001] axis, the sublattices moments evolve to a canted arrangement, with the AF component always perpendicular to the field. With H along the Co[0001] axis, the AF moments flop in a direction perpendicular to Co[0001] axis. The spin flop transition is not abrupt, but can be described as a gradual rotation that is completed at 2 kOe. The anisotropy of the sublattice magnetization is related to the anisotropy of the magnetoresistance. This has the conventional dumbbell behavior with the field applied perpendicular to the Co[0001] axis, but exhibits an extended plateau near H = 0, and a slight increase up to H {approximately} 2 kOe, when H is parallel to Co[0001] axis.
- Research Organization:
- Argonne National Lab., IL (US)
- Sponsoring Organization:
- US Department of Energy (US)
- DOE Contract Number:
- W-31109-ENG-38
- OSTI ID:
- 10985
- Report Number(s):
- ANL/MSD/CP-97361
- Country of Publication:
- United States
- Language:
- English
Similar Records
Spin-flop transition on Gd5Ge4 observed by x-ray resonant magnetic scattering and first-principles calculations of magnetic anisotropy
Magnetic coupling between Sm3+ and the canted spin in an antiferromagnetic SmFeO3 single crystal