Fuzzy Linguistic Knowledge Based Behavior Extraction for Building Energy Management Systems
Significant portion of world energy production is consumed by building Heating, Ventilation and Air Conditioning (HVAC) units. Thus along with occupant comfort, energy efficiency is also an important factor in HVAC control. Modern buildings use advanced Multiple Input Multiple Output (MIMO) control schemes to realize these goals. However, since the performance of HVAC units is dependent on many criteria including uncertainties in weather, number of occupants, and thermal state, the performance of current state of the art systems are sub-optimal. Furthermore, because of the large number of sensors in buildings, and the high frequency of data collection, large amount of information is available. Therefore, important behavior of buildings that compromise energy efficiency or occupant comfort is difficult to identify. This paper presents an easy to use and understandable framework for identifying such behavior. The presented framework uses human understandable knowledge-base to extract important behavior of buildings and present it to users via a graphical user interface. The presented framework was tested on a building in the Pacific Northwest and was shown to be able to identify important behavior that relates to energy efficiency and occupant comfort.
- Research Organization:
- Idaho National Laboratory (INL)
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC07-05ID14517
- OSTI ID:
- 1097187
- Report Number(s):
- INL/CON-13-29197
- Country of Publication:
- United States
- Language:
- English
Similar Records
Advanced co-simulation framework for assessing the interplay between occupant behaviors and demand flexibility in commercial buildings
Mining Building Energy Management System Data Using Fuzzy Anomaly Detection and Linguistic Descriptions