skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hanford Bulk Vitrification Technology Status

Conference ·
OSTI ID:1092722

Research and testing was initiated in 2003 to support the selection of a supplemental treatment technology for Hanford low-activity wastes (LAWs). AMEC’s bulk vitrification process was chosen for full-scale demonstration, and the Demonstration Bulk Vitrification System (DBVS) project was started in 2004. Also known as in-container vitrification™ (ICV™), the bulk vitrification process combines soil, liquid LAW, and additives (B2O3 and ZrO2); dries the mixture; and then vitrifies the material in a batch feed-while-melt process in a refractory lined steel container. The DBVS project was initiated with the intent to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat LAW from Tank 241-S-109 at the U.S. Department of Energy (DOE) Hanford Site. AMEC is adapting its ICV™ technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DBVS project is funded by the DOE Office of River Protection and administered by CH2M HILL Hanford Group, Inc. Since the beginning of the selection process in 2003, testing has utilized crucible-scale, engineering-scale, and full-scale bulk vitrification equipment. Crucible-scale testing, coupled with engineering-scale testing, helps establish process limitations of selected glass formulations. Full-scale testing provides critical design verification of the ICV™ process both before and during operation of the demonstration facility. Initial testing focused on development and validation of the baseline equipment configuration and glass formulation. Subsequent testing was focused on improvements to the baseline configuration. Many improvements have been made to the bulk vitrification system equipment configuration and operating methodology since its original inception. Challenges have been identified and met as part of the parallel testing and design process. A 100% design package for the pilot plant is complete and has been submitted to DOE for review. Additional testing will be performed to support both the DBVS project and LAW treatment for the full Hanford mission. In the near term, this includes testing some key equipment components such as the waste feed dryer and other integrated subsystems, as well as waste form process improvements. Additional testing will be conducted to verify that the system is adaptive to changing feed streams. This paper discusses the progress of the bulk vitrification system from its inception to its current state-of-the-art. Specific attention will be given to the testing and process design improvements that have been completed over the last year. These include the completion of full-scale ICV™ Test FS38C as well as process improvements to the feeding method, temperature control, and molten ionic salt separation control.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1092722
Report Number(s):
PNNL-16370; 830403000
Resource Relation:
Conference: 2007 Waste Management Symposium: Global Accomplishments in Environmental and Radioactive Waste Management: Education and Opportunity for the Next Generation of Waste Management Professionals, February 25 - March 1, 2007, Tucson, Arizona
Country of Publication:
United States
Language:
English