skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DWPF simulant CPC studies for SB8

Technical Report ·
DOI:https://doi.org/10.2172/1087646· OSTI ID:1087646

The Savannah River National Laboratory (SRNL) accepted a technical task request (TTR) from Waste Solidification Engineering to perform simulant tests to support the qualification of Sludge Batch 8 (SB8) and to develop the flowsheet for SB8 in the Defense Waste Processing Facility (DWPF). These efforts pertained to the DWPF Chemical Process Cell (CPC). Separate studies were conducted for frit development and glass properties (including REDOX). The SRNL CPC effort had two primary phases divided by the decision to drop Tank 12 from the SB8 constituents. This report focuses on the second phase with SB8 compositions that do not contain the Tank 12 piece. A separate report will document the initial phase of SB8 testing that included Tank 12. The second phase of SB8 studies consisted of two sets of CPC studies. The first study involved CPC testing of an SB8 simulant for Tank 51 to support the CPC demonstration of the washed Tank 51 qualification sample in the SRNL Shielded Cells facility. SB8-Tank 51 was a high iron-low aluminum waste with fairly high mercury and moderate noble metal concentrations. Tank 51 was ultimately washed to about 1.5 M sodium which is the highest wash endpoint since SB3-Tank 51. This study included three simulations of the DWPF Sludge Receipt and Adjustment Tank (SRAT) cycle and Slurry Mix Evaporator (SME) cycle with the sludge-only flowsheet at nominal DWPF processing conditions and three different acid stoichiometries. These runs produced a set of recommendations that were used to guide the successful SRNL qualification SRAT/SME demonstration with actual Tank 51 washed waste. The second study involved five SRAT/SME runs with SB8-Tank 40 simulant. Four of the runs were designed to define the acid requirements for sludge-only processing in DWPF with respect to nitrite destruction and hydrogen generation. The fifth run was an intermediate acid stoichiometry demonstration of the coupled flowsheet for SB8. These runs produced a set of processing recommendations for DWPF along with some data related to Safety Class documentation at DWPF. Some significant observations regarding SB8 follow: Reduced washing in Tank 51 led to an increase in the wt.% soluble solids of the DWPF feed. If wt.% total solids for the SRAT and SME product weren’t adjusted upward to maintain insoluble solids levels similar to past sludge batches, then the rheological properties of the slurry went below the low end of the DWPF design bases for the SRAT and SME. Much higher levels of dissolved manganese were found in the SRAT and SME products than in recent sludge batches. Closed crucible melts were more reduced than expected. The working hypothesis is that the soluble Mn is less oxidizing than assumed in the REDOX calculations. A change in the coefficient for Mn in the REDOX equation was recommended in a separate report. The DWPF (Hsu) stoichiometric acid equation was examined in detail to better evaluate how to control acid in DWPF. The existing DWPF equation can likely be improved without changing the required sample analyses through a paper study using existing data. The recommended acid stoichiometry for initial SB8 SRAT batches is 115-120% stoichiometry until some processing experience is gained. The conservative range (based on feed properties) of stoichiometric factors derived in this study was from 110-147%, but SRNL recommends using only the lower half of this range, 110-126% even after initial batches provide processing experience. The stoichiometric range for sludge-only processing appears to be suitable for coupled operation based on results from the run in the middle of the range. Catalytic hydrogen was detectable (>0.005 vol%) in all SRAT and SME cycles. Hydrogen reached 30-35% of the SRAT and SME limits at the mid-point of the stoichiometry window (bounding noble metals and acid demand).

Research Organization:
Savannah River Site (SRS), Aiken, SC (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC09-08SR22470
OSTI ID:
1087646
Report Number(s):
SRNL-STI-2013-00106; TRN: US1300137
Country of Publication:
United States
Language:
English

Similar Records

DWPF SIMULANT CPC STUDIES FOR SB7B
Technical Report · Tue Nov 01 00:00:00 EDT 2011 · OSTI ID:1087646

SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 6 QUALIFICATION
Technical Report · Fri Oct 01 00:00:00 EDT 2010 · OSTI ID:1087646

DWPF Simulant CPC Studies For SB8
Technical Report · Wed Sep 25 00:00:00 EDT 2013 · OSTI ID:1087646