skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Discrete Ordinate Quadrature Selection for Reactor-based Eigenvalue Problems

Conference ·
OSTI ID:1083720

In this paper we analyze the effect of various quadrature sets on the eigenvalues of several reactor-based problems, including a two-dimensional (2D) fuel pin, a 2D lattice of fuel pins, and a three-dimensional (3D) reactor core problem. While many quadrature sets have been applied to neutral particle discrete ordinate transport calculations, the Level Symmetric (LS) and the Gauss-Chebyshev product (GC) sets are the most widely used in production-level reactor simulations. Other quadrature sets, such as Quadruple Range (QR) sets, have been shown to be more accurate in shielding applications. In this paper, we compare the LS, GC, QR, and the recently developed linear-discontinuous finite element (LDFE) sets, as well as give a brief overview of other proposed quadrature sets. We show that, for a given number of angles, the QR sets are more accurate than the LS and GC in all types of reactor problems analyzed (2D and 3D). We also show that the LDFE sets are more accurate than the LS and GC sets for these problems. We conclude that, for problems where tens to hundreds of quadrature points (directions) per octant are appropriate, QR sets should regularly be used because they have similar integration properties as the LS and GC sets, have no noticeable impact on the speed of convergence of the solution when compared with other quadrature sets, and yield more accurate results. We note that, for very high-order scattering problems, the QR sets exactly integrate fewer angular flux moments over the unit sphere than the GC sets. The effects of those inexact integrations have yet to be analyzed. We also note that the LDFE sets only exactly integrate the zeroth and first angular flux moments. Pin power comparisons and analyses are not included in this paper and are left for future work.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1083720
Resource Relation:
Conference: International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013), Sun Valley, ID, USA, 20130505, 20130509
Country of Publication:
United States
Language:
English

Similar Records

Discrete ordinate quadrature selection for reactor-based Eigenvalue problems
Conference · Mon Jul 01 00:00:00 EDT 2013 · OSTI ID:1083720

The generation of arbitrary order, non-classical, Gauss-type quadrature for transport applications
Journal Article · Tue Sep 01 00:00:00 EDT 2015 · Journal of Computational Physics · OSTI ID:1083720

Asymptotic convergence of the angular discretization error in the scalar flux computed from the particle transport equation with the method of discrete ordinates
Journal Article · Tue Nov 19 00:00:00 EST 2019 · Annals of Nuclear Energy (Oxford) · OSTI ID:1083720