skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Analysis of Ignition Behavior in a Turbocharged Direct Injection Dual Fuel Engine Using Propane and Methane as Primary Fuels

Journal Article · · Journal of Energy Resources Technology
DOI:https://doi.org/10.1115/1.4023482· OSTI ID:1079593

This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (© pilot ¼ 0.2-0.6 and © overall ¼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant © pilot (> 0.5), increasing © overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing © overall (at constant © pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

Research Organization:
Mississippi State Univ., Starkville, MS (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
DOE Contract Number:
FG36-06GO86025
OSTI ID:
1079593
Report Number(s):
GO8602556
Journal Information:
Journal of Energy Resources Technology, Vol. 135, Issue 3; ISSN 0195-0738
Country of Publication:
United States
Language:
English