Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Aerodynamics, heat and mass transfer in steam-aerosol turbulent flows in containment

Conference ·
OSTI ID:107795
; ;  [1]
  1. Research & Engineering Centre of Nuclear Plants Safety, Moscow (Russian Federation); and others
In this report an analysis of aerodynamic and heat transfer processes at the blowdown of gas-dispersed mixture into the containment volume is presented. A few models for description of the volume averaged and local characteristics are analyzed. The mathematical model for description of the local characteristics of the turbulent gas-dispersed flows was developed. The calculation of aerodynamic, heat and mass transfer characteristics was based on the Navier-Stokes, energy and gas mass fractions conservation equations. For calculation of dynamics and deposition of the aerosols the original diffusion-inertia model is developed. The pulsating characteristics of the gaseous phase were calculated on the base (k-{xi}) model of turbulence with modification to account thermogravitational force action and influence of particle mass loading. The appropriate boundary conditions using the {open_quotes}near-wall function{close_quotes} approach was obtained. Testing of the mathematical models and boundary conditions has shown a good agreement between computation and data of comparison. The described mathematical models were applied to two- and three dimensional calculations of the turbulent flow in containment at the various stages of the accident.
Research Organization:
Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology; American Nuclear Society, La Grange Park, IL (United States); American Inst. of Chemical Engineers, New York, NY (United States); American Society of Mechanical Engineers, New York, NY (United States); Canadian Nuclear Society, Toronto, ON (Canada); European Nuclear Society (ENS), Bern (Switzerland); Atomic Energy Society of Japan, Tokyo (Japan); Japan Society of Multiphase Flow, Kyoto (Japan)
OSTI ID:
107795
Report Number(s):
NUREG/CP--0142-Vol.2; CONF-950904--Vol.2; ON: TI95017078
Country of Publication:
United States
Language:
English