skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Potential alteration of fjordal circulation due to a large floating structure—Numerical investigation with application to Hood Canal basin in Puget Sound

Journal Article · · Applied Ocean Research, 39:146-157

Circulation in typical fjords is characterized by a shallow brackish layer at the surface over a deep long and narrow saltwater column. This surface layer is responsible for the outflow of water from the fjord, is easily disrupted by external forces, such as wind, and is influenced by freshwater inflow. In this paper, we postulate that the stability of fjordal circulation may also be vulnerable to impacts from anthropogenic alterations, such as floating structures, that could constrict the mixing and transport in the upper layers of the water column. The potential for alteration of circulation in Hood Canal, a silled-fjord located inside Puget Sound, Washington, has been examined. Using classical analytical treatments along the lines formulated by Hansen and Rattray [1965], Rattray [1967], Dyer [1973] and more recently, MacCready [2004], we develop a solution applicable to a range of estuary classifications varying from a partially mixed estuary regime to classical fjord conditions. Both estuary types exist in the Puget Sound system, and we compare our analytical solution with observed data. The analysis is based on an exponential variation of eddy viscosity with depth, and it has been extended further with modifications of the free surface boundary conditions to develop a solution representing the presence of a floating bridge at the estuary/fjord entrance. The model results show that tidally averaged mean circulation under the influence of such a constraint could reduce by as much as 30 to 50 percent. The overall water quality of fjords and narrow estuaries is dependent on net circulation and flushing. A potential decrease in residual flow or a corresponding increase in residence time of this magnitude merits further study.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1074297
Report Number(s):
PNNL-SA-71339
Journal Information:
Applied Ocean Research, 39:146-157, Journal Name: Applied Ocean Research, 39:146-157
Country of Publication:
United States
Language:
English