skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Discovery of a Splicing Regulator Required for Cell Cycle Progression

Journal Article · · PLoS Genetics, 9(2):Article No. e1003305

In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1073574
Report Number(s):
PNNL-SA-94022; 40070; KP1704020
Journal Information:
PLoS Genetics, 9(2):Article No. e1003305, Journal Name: PLoS Genetics, 9(2):Article No. e1003305
Country of Publication:
United States
Language:
English

Similar Records

Crystal structure of a beta-finger domain of Prp8 reveals analogy to ribosomal proteins
Journal Article · Tue Sep 16 00:00:00 EDT 2008 · Proceedings of the National Academy of Sciences of the United States of America · OSTI ID:1073574

RNA splicing and genes
Journal Article · Fri Nov 25 00:00:00 EST 1988 · JAMA, J. Am. Med. Assoc.; (United States) · OSTI ID:1073574

Structural and Functional Divergence of the Aldolase Fold in Toxoplasma gondii
Journal Article · Thu Oct 02 00:00:00 EDT 2014 · Journal of Molecular Biology · OSTI ID:1073574