skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanostructured tungsten carbide/cobalt alloys: Processing and properties

Miscellaneous ·
OSTI ID:106979

This research represents an extension of previous work on the synthesis and processing of nanostructured WC/Co alloys. The earlier work resulted in a novel thermochemical process for making nanostructured WC/Co powders (3-30 wt% Co), which involved the reductive decomposition and gas phase carburization of homogeneous precursor powders, prepared by spray drying aqueous solution mixtures of W and Co salts. A shortcoming of the process was the formation of a relatively large amount of uncombined carbon during gas phase carburization using pre CO. AnOtherr unsolved problem was the rapid coarsening of WC particles during liquid phase sintering, making it difficult to achieve the desired nanostructures in the fully consolidated materials. In the present work, both problems have been addressed and successfully overcome. Carburization in CO/H{sub 2} gas mixtures has been shown to be superior to carburization in pure CO, in that it avoids the formation of excess carbon without sacrificing the desirable high carburization rate. Another advantage is the finer WC grain size achieved, because of the shorter reaction time at relatively low temperatures, 650-750{degrees}C. Othe carbon source gases, such as CH{sub 4}/H{sub 2} and C{sub 2}H{sub 4}/H{sub 2} gas mixtures, cannot produce tungsten monocarbide at such low temperatures. Thus, carburization in CO/H{sub 2} gas mixtures appears to be optimal for synthesizing nanostructured WC/Co powders. As to liquid phase sintering of powder compacts, it has been demonstrated that mechanical mixing of a small amount of VC powder with the nanograined WC/Co powder inhibits grain growth. A striking result was the linear increase in hardness of WC/7 wt% Co with the amount of VC added, at least up to the solubility limit (about 10 wt%) of VC in liquid cobalt at the sintering temperature. Preliminary work has also demonstrated the feasibility of plasma spraying low-density nanostructured powders to produce dense, wear resistant coatings.

Research Organization:
Rutgers-the State Univ., New Brunswick, NJ (United States)
OSTI ID:
106979
Resource Relation:
Other Information: TH: Thesis (Ph.D.); PBD: 1993
Country of Publication:
United States
Language:
English